

Prince Sultan University Department of Mathematical Sciences

MATH 002 Final Examination Semester I, Term 161 Monday, January 23, 2017 Time Allowed: 3 hours

Student Name:						
Student ID #:						
Circle your Instructor's Name:	Dr. Wasfi	Dr. Nabil	Dr. Mohammed	Mr. Abid 8am	Mr. Abid 11am	

- 1. You may use a scientific calculator that does not have programming or graphing capabilities.
- 2. You may NOT borrow a calculator from anyone.
- 3. You may NOT use notes or any textbook.
- 4. There should be NO talking during the examination.
- 5. If your mobile phone is seen or heard, your exam will be taken immediately.
- 6. You must show all your work beside the problem. Be organized.
- 7. You may use the back of the pages for extra space, but be sure to indicate that on the page with the problem.
- 8. This examination has 17 problems. Make sure your paper has all these problems.

Problems	Max points	Student's Points			
1-4	18				
5-8	20				
9-11	13				
12-13	11				
14-15	16				
16-17	22				
Total	100				
Total	40				

Q.1 (6 pts) Use transformations of the graph of $f(x) = \left(\frac{1}{2}\right)^x$ to sketch the graph of $(1)^{x-1}$

 $f(x) = -\left(\frac{1}{2}\right)^{x-1} - 2$. Show the location of the asymptote. **Find the Domain and Range.**

Q.2 (4 pts) Expand the following logarithm, as much as possible: $\log_5 \left(\frac{25x^{\frac{1}{3}}}{y}\right)^2$

Q.3 (4 pts) Solve $8e^{6x-5} + 3 = 19$

Q.4 (4 pts) Use the reference angle theorem to find the exact value of $\cot 510^{\circ}$

Q.5 (6 pts) Given that $\csc \theta = -\frac{8}{3}$ and θ lies in Quadrant 3, find the value of each of the remaining trigonometric functions.

Q.6 (4 pts) Find the value of $\tan\left[\sin^{-1}\left(-\frac{7}{25}\right)\right]$, without using a calculator. Show all your steps.

Q.7 (4 pts) Find the amplitude, period and phase shift of the function $y = -3\sin(2x - \pi)$. **Do not graph the function.**

Q.8 (6 pts) Verify the identity: $\frac{\sin x}{1 - \cos x} = \csc x + \cot x$

Q.9 (4 pts) Find the exact value of $\cos 111^{\circ} \cos 6^{\circ} + \sin 111^{\circ} \sin 6^{\circ}$. Show all your steps.

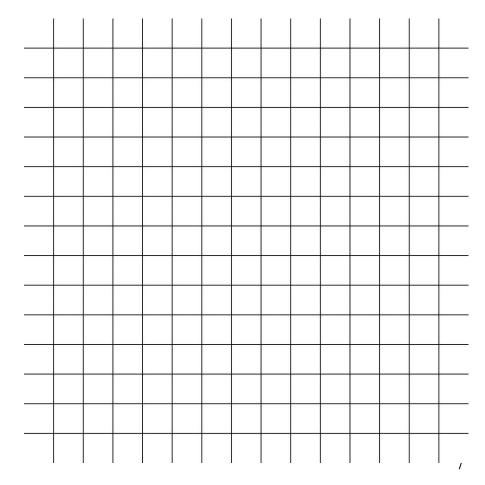
Q.10 (4 pts) Solve the equation $4\cos^2 x - 3 = 0$ over the interval $[0, 360^\circ)$

Q.11 (5 pts) Given that
$$A = \begin{bmatrix} 1 & 3 & 4 \\ 1 & 2 & 1 \\ 3 & 4 & 3 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$. Find $\frac{1}{3}(A^2 + B) - I_3$

Q.12 (3 pts) What type of solution is represented by the reduced matrix? $\begin{bmatrix} 1 & 0 & -1 & | & 1 \\ 0 & 1 & 2 & | & 1 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$ Write the solution set of the system represented by this matrix, if any.

Q.13 (8 pts) Use inverse of the coefficient matrix A^{-1} to solve $\begin{cases} x+y = 0\\ 3y-z=-3\\ x-y +z=2 \end{cases}$

Q.14 (10 pts) Use Cramer's Rule to find <u>only</u> the value of $y \begin{cases} x+y = 3 \\ 3y-z=5 \\ x-y+z=0 \end{cases}$


Do not find the values of x and z.

	1	2	1	-1
Q.15 (6 pts) Evaluate the determinant	0	3	1	2
Q.15 (6 pts) Evaluate the determinant	3	0	0	4
	1	0	1	1

Q.16 (6 pts) Find the standard form of the equation of the parabola with its Directrix at x = 2 and its focus at (-6,3).

Q.17 (6 pts) Given the hyperbola $\frac{(x-2)^2}{16} - \frac{(y+1)^2}{9} = 1$. Find the coordinates of the foci and the equations of the asymptotes.

Q.18 (10 pts) Identify and sketch the conic section $4x^2 + 9y^2 + 24x - 18y + 9 = 0$.

