Prince Sultan University Date. April 2013 Dept. of Mathematical Sciences Math 215- MidTerm No.2 -

- 1. Use Lagrange multipliers to minimize $f(x, y, z) = x^2 + y^2 + z^2$ subject to the constraints g(x, y, z) = x + y + z 12 = 0 and $h(x, y, z) = x^2 + y^2 z = 0$
- **2.** Find local extrema for $f(x, y) = 2x^2 y^3 2xy$.
- **3.** The points A(4,5,2), B(1,7,3) and C(2,4,5) are they vertices of an equilateral triangle?
- 4. Find the directional derivative of $f(x, y, z) = y^2 + 2ye^{4x}$ at P(0, -2) in the direction from (0, -2) to (-4, 4).
- 5. Prove that $||u+v||^2 + ||u-v||^2 = 2||u||^2 + 2||v||^2$, $u, v \in \mathbb{R}^3$.
- 6. Determine if the following vectors are coplanar?

$$\overrightarrow{a} = \overrightarrow{i} - 2\overrightarrow{j} + \overrightarrow{k}, \quad \overrightarrow{b} = 3\overrightarrow{i} - 2\overrightarrow{k}, \quad \overrightarrow{c} = 5\overrightarrow{i} - 4\overrightarrow{j}.$$

- 7. Find a vector \overrightarrow{a} perpendicular to the plane determined by the following points A(0, -2, 1), B(1, -1, -2), and C(-1, 1, 0).
- 8. If the four vectors \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} and \overrightarrow{d} are coplanar, show that $(\overrightarrow{a} \times \overrightarrow{b}) \times (\overrightarrow{c} \times \overrightarrow{d}) = 0.$
- **9.** Find k_1 , k_2 such that the point $P(k_1, 1, k_2)$ lies on the same line passing through Q(0, 2, 3) and R(2, 7, 5).
- 10. Find an equation of the plane that passes through P(-1,2,1) and Q(1,-1,2) and is parallel to the line of intersection of the planes :

$$2x - 3y - z = 6$$
, and $3x - y + 2z = 0$.