

First Exam

Part 1:

(1 point each)

For the following questions, please circle O the correct answer to the nearest number.

1. A runner runs around a track consisting of two parallel lines **96 m** long connected at the ends by two semicircles with a radius of **49 m**. She completes one lap in **100** seconds. What is her average velocity?

A) 2.5 m/s B) 5.0 m/s C) 10 m/s D) 0 m/s E) 3.0 m/s

2. Which one of the following quantities is a vector quantity?

A) the age of the earth	B) the mass of a football
C) the earth's pull on your body	D) the temperature of an iron bar
E) the number of people attending a	baseball game

3. An object is thrown upwards with a speed of **16 m/s**. How long does it take it to reach a height of **7.0 m** on the way up?

A) 0.52 s B) 1.2 s C) 2.4 S D) 3.1 s E) 4.2 s

4. Town <u>A</u> lies 20 km north of town <u>B</u>. Town <u>C</u> lies 13 km west of town <u>A</u>. A small plane flies directly from town <u>B</u> to town <u>C</u>. What is the **displacement** of the plane?

A)	33 km, 33° north of west	B)	19 km, 33° north of west
C)	24 km, 57° north of west	D)	31 km, 57° north of west
E)	$6.6 \text{ km}, 40^{\circ} \text{ north of west}$		

5. A car travels in a straight line covering a total distance of **90.0 miles** in **60.0 minutes**. Which one of the following statements concerning **this situation** is necessarily **true**?

A) The velocity of the car is **constant**.

- B) The acceleration of the car must be **non-zero**.
- C) The first **45 miles** must have been covered in **30.0 minutes**.
- D) The speed of the car must be **90.0 miles per hour** throughout the entire trip.
- E) The average velocity of the car is **90.0 miles per hour** in the direction of motion.

6. During the first **18 minutes** of a **1.0-hour** trip, a car has an average speed of **11 m/s**. **What must the average speed** of the car be during the last **42 minutes** of the trip be if the car is to have an average speed of **21 m/s** for the entire trip?

A) 21 m/s B) 22 m/s C) 25 m/s D) 27 m/s E) 29 m/s

7. For which one of the following situations will the **path length** equal the magnitude of the **displacement**?

- A) A jogger is running around a circular path.
- B) A ball is rolling down an inclined plane.
- C) A train travels 5 miles east; and then, it stops and travels 2 miles west.
- D) A ball rises and falls after being thrown straight up from the earth's surface.
- E) A ball on the end of a string is moving in a vertical circle.

8. The figure below represents the position of a particle as it travels along the *x*-axis. What is the magnitude of the average velocity of the particle between t = 1 s and t = 4 s?

9. When the outdoor emergency warning siren at Prince Sultan University was tested, the sound from the siren took **7.0 s** to reach her house located **2.38 km** from the school. What is the speed of sound in air?

A) 240 m/s B) 340 m/s C) 440 m/s D) 540 m/s E) 640 m/s

10. The velocity of a particle as a function of time is given by $\mathbf{v}(\mathbf{t}) = (2.3 \text{ m/s}) + (4.1 \text{ m/s}^2)\mathbf{t} - (6.2 \text{ m/s}^3)\mathbf{t}^2$. What is the average acceleration of the particle between $\mathbf{t} = 1.0 \text{ s}$ and $\mathbf{t} = 2.0 \text{ s}$?

A) -14.1 m/s² B) -14.5 m/s² C) 14.5 m/s² D) 14.1 m/s² E) 12 m/s²

<u>Part 2:</u>

(3 points each)

Please read each question carefully and show your work in the space provided. Your answer should include with the appropriate units.

1. Refer to the figure below. Find the net resultant vector

Answer_____

A ball is thrown vertically up at time t=0.0 from a point on a roof 70 m above the ground. The ball rises and then strikes the ground. The initial velocity of the ball is 31.9 m/s. Consider all quantities as positive in the upward direction. Find the time when the ball strikes the ground.

Answer_____