·		CHEMISTRY 101 FIRST EXAM (131)				
PRINCE SULTAN UNIVERSITY	Name:		Date: 30/10/2013			
C 20294. 27.	Student no		Section:			

<u>Useful Information:</u> Avogadro's number = 6.02×10^{23}

	-																
\mathbf{H}^{1}																	He ²
1.000		_										_					4
Li ³	Be ⁴											\mathbf{B}^5	\mathbf{C}^{6}	\mathbf{N}^7	\mathbf{O}^{8}	\mathbf{F}^9	Ne^{10}
6.941	9.012											10.81	12.01	14.01	16	19	20.18
Na^{11}	Mg^{12}											\mathbf{Al}^{13}	Si ¹⁴	\mathbf{P}^{15}	\mathbf{S}^{16}	\mathbf{Cl}^{17}	\mathbf{Ar}^{18}
22.99	24.31											26.98	28.09	30.97	32.06	35.45	39.95
\mathbf{K}^{19}	\mathbf{Ca}^{20}	\mathbf{Sc}^{21}	Ti ²²	\mathbf{V}^{23}	Cr ²⁴	Mn ²⁵	Fe ²⁶	\mathbf{Co}^{27}	Ni ²⁸	Cu^{29}	\mathbf{Zn}^{30}	\mathbf{Ga}^{31}	\mathbf{Ge}^{32}	As^{33}	Se ³⁴	Br ³⁵	Kr ³⁶
39.10	40.08	44.96	47.9	50.94	51.99	54.94	55.85	58.93	58.71	63.54	65.37	69.72	72.59	74.92	78.96	79.9	83.8
Rb ³⁷	Sr ³⁸	\mathbf{Y}^{39}	\mathbf{Zr}^{40}	\mathbf{Nb}^{41}	Mo ⁴²	\mathbf{Tc}^{43}	\mathbf{Ru}^{44}	Rh ⁴⁵	Pd ⁴⁶	Ag^{47}	\mathbf{Cd}^{48}	In ⁴⁹	Sn ⁵⁰	Sb ⁵¹	Te ⁵²	\mathbf{I}^{53}	Xe ⁵⁴
85.47	87.62	88.91	91.22	92.91	95.94	99.91	101.1	102.91	106.4	107.87	112.4	114.8	118.69	121.75	127.6	126.9	131.3
Cs^{55}	Ba ⁵⁶	57-71	\mathbf{Hf}^{72}	Ta ⁷³	W^{74}	\mathbf{Re}^{75}	Os^{76}	Ir ⁷⁷	Pt ⁷⁸	Au ⁷⁹	Hg^{80}	Tl ⁸¹	\mathbf{Pb}^{82}	Bi ⁸³	Po ⁸⁴	At^{85}	Rn ⁸⁶
132.9	137.3	*	178.5	180.9	183.85	186.2	190.2	192.2	195.1	196.97	200.6	204.37	207.2	208.98	210	210	222

Write the best fit answer of the following questions in this table:

Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8
(1 pt)	(1 pt)	(1 pt)	(1 pt)	(1 pt)	(1.5 pt)	(1 pt)	(1 pt)
Q9	Q10	Q11	Q12	Q13		Total (13)	
(1 pt)	(1 pt)	(1 pt)	(1.5 pt)	(1 pt)			

1. Perform the following arithmetic and express the answer in scientific notation rounded to the proper number of significant figures. Assume all values come from measurements:

		$3.38 \ge 0.012 = A$ A $\ge 0.381 = D$	
The value of D) is:		
a) 1.5 x 10 ⁻²	b) 1.6 x 10 ⁻²	c) 1.545×10^{-2}	d) 1.55 x 10 ⁻²

- 2. Hematite (Iron ore) weighing 70.7 g was placed in a flask. The flask with hematite was filled with water and weighed. The weight of them was 109.3 g and their final volume was 53.2 mL. Calculate the density (g/mL) of hematite, given that the density of water was 0.997 (g/mL):
 - a) 0.55 b) 1.33 c) 0.76 d) 4.88
- 3. The masses of diamonds are measured by carats. A carat is defined as 200 mg. If a jeweler has 275 carats, *what mass of diamond (in kg) does he have?*

a) 55.000 b) 55,000 c) 0.055 d) 5.500

4. Give an example for each of the following:

- A binary compound composes of a nonmetal in 1A group and a halide which has atomic mass of 79.9 amu.....
- A metalloid in group 6A.....
- An element in group 3A and the third period.....
- A molecule which is neither compound nor element.....
- 5. A monatomic ion has a charge of +2. The nucleus of the ion has the mass number of 62. If the number of neutrons is 1.21 times that of the protons. What is the symbol of this ion:

a) 55.000 b) 55,000 c) 0.055 d) 5.500

6. Fill in the blank:

- The formula of Iron(III) acetate is.....
- The name of BeO₂ is.....
- The formula of Mercury(I) chloride is.....
- The name of Mg(ClO₄)₂.6H₂O is.....

7. The number of bromine *molecules* exist in 3.992 g of Mg(BrO₃)₂ is:

a) 4.22×10^{25} b) 1.72×10^{22} c) 4.3×10^{21} d) 8.6×10^{21}

- 8. A 1.175 g of an alloy containing Ag gave by series of reactions 1.449 g AgCl. Calculate the percentage composition of silver in the alloy:
 - a) 46.43% b) 92.81% c) 75.210% d) 0.929%
- 9. Calculate the number of hydrogen atoms required to react completely with 14 g of nitrogen according to the following equation:

a) 9.033 x 10²³ b) 6.022 x 10²³ c) 1.807 x 10²⁴ d) 3.614 x 10²⁴

- 10. If 5.0 g of metal oxide contains 4.0 g of metal M whose atomic mass is 96, then the empirical formula of the metal oxide is:
 - a) MO b) MO_2 c) M_2O_3 d) M_3O_4
- 11. Calculate the percentage yield of CCl_4 obtained, if 32.0 g of CH_4 were allowed to react with *excess* chlorine and gave 231.0 g of CCl_4 :

a) 75% b) 50% c) 100% d) 25%

12. A precipitation reaction was carried out by adding 100 mL of water to 1.0 g of a salt mixture of $Pb(NO_3)_2$ and NaI according to the following equation:

$$Pb(NO_3)_{2(aq)} + 2 NaI_{(aq)} \rightarrow PbI_{2(s)} + 2 NaNO_{3(aq)}$$

If 0.30 g of PbI2 was collected at the end of the reaction. *Given that NaI was exist in excess.*

- Calculate the percentage of Pb(NO₃)₂ in the salt mixture:
- Claculte the mass of NaI that left over as excess at the end of the reaction:
- 13. Element X has two naturally occurring isotopes, ²⁰X (20.021 amu) and ²¹X (20.998 amu). If the average atomic mass of X is 20.800 amu, then the abundances of ²⁰X and ²¹X respectively are:
 - a) 20.26%, 79.74% b) 50%, 50% c) 79.74%, 20.26% d) 18.18%, 81.82%

-GOOD LUCK-