Prince Sultan University

Deanship of Educational Services Department of Mathematics and General Sciences

COURSE DETAILS:

Business Calculus	MATH 211 FINAL EX		
Semester:	Spring Semester Term 172		
Date:	Monday May 14, 2018		
Time Allowed:	180 minutes		

STUDENT DETAILS:

Student Name:	
Student ID Number:	
Section:	151
Instructor's Name:	

INSTRUCTIONS:

- You may use a scientific calculator that does not have programming or graphing capabilities. NO borrowing calculators.
- NO talking or looking around during the examination.
- NO mobile phones. If your mobile is seen or heard, your exam will be taken immediately.
- Show all your work and be organized.
- You may use the back of the pages for extra space, but be sure to indicate that on the page with the problem.

GRADING:

Page 1	Page 2	Page 3	Page 4	Page 5	Total	Total
21	20	19	17	23	100	40

<u>Q.1 (6 points):</u> Find the following limits:

Show all your steps

a) $\lim_{x \to +\infty} \frac{1 - 3x^3}{2x^3 + 6x + 2}$

b)
$$\lim_{x \to 1} \frac{x^2 + 4x - 5}{x^2 - 1}$$

Q.2 (5 points): Determine whether $f(x) = \begin{cases} -x^2 + 2x - 3 & \text{if } x \ge 4 \\ 6x - 3 & \text{if } 2 < x < 4 \\ 3 - x + 2x^2 & \text{if } x \le 2 \end{cases}$ if $x \le 2$

<u>Q.3 (5 points)</u>: Find the equation of the tangent line to the curve $y \cdot \ln x + y^2 = x$ at (1, -1)

<u>Q.4 (5 points)</u>: \$50,000 was deposited in a bank account. The money was tripled 12 years later. What is the interest rate if it is compounded continuously?

Q.5 (9 points): Find the derivative, $\frac{dy}{dx}$. Simplify reasonably.

a)
$$y = \sqrt{\frac{1-2x}{3x+2}}$$

b)
$$y = \ln \sqrt{2x^2 + 3}$$

c)
$$y = x^2 e^{-x} (3x+5)^3$$

Q.6 (6 points): A manufacturer estimates when x units of a certain commodity are produced each month, the total cost will be $C(x) = x^3 + 5x + 162$ dollars, and all x units can be sold at the price p(x) = 180 - 2x dollars per unit. Determine the **level of production**, x that results in **maximum profit**.

Q.7 (5 points): A manufacturer's total cost is $C(q) = 0.1q^3 - 0.5q^2 + 500q + 200$ dollars when q thousand units are produced. Currently 4 thousand units (q = 4) are being produced and the manufacturer is planning to increase the level of production to 4,300 units. Use marginal analysis to estimate how this change will affect the total cost.

<u>Q.8 (13 points)</u>: Given the function $f(x) = \frac{x}{x^2 + 1}$ **<u>DO NOT GRAPH</u>**

Show all your steps

- a) Find the vertical asymptotes, if any.
- b) Find the horizontal asymptote, if any.
- c) Find the critical points, if any.

- d) Find the intervals of increase and decrease, if any.
- e) Find the relative maximum and minimum, if any.
- f) Find the intervals of concave up and concave down, if any.

- g) Find the inflection points, if any.
- Q.9 (6 points): A certain machine loses from its value with time so it's value after t years becomes $Q(t) = 20,000e^{-0.4t}$ dollars.
 - a) At what rate is the value of the machine changing with respect to time after 5 years? Is the value increasing or decreasing with time?
 - b) At what percentage rate is the value of the machine changing with respect to time after 5 years?

Q.10 (11 points): Evaluate the integrals:

a) $\int_{1}^{6} x^2 (x-1) dx$

b) $\int x \cdot e^{-5x} dx$

c)
$$\int_{0}^{1} \frac{e^{2x} dx}{\sqrt{1 + e^{2x}}}$$

<u>Q.11 (6 points)</u>: Saudi Airlines determines that when a round trip ticket between Riyadh and Jeddah costs *p* Riyals, the daily demand for the tickets is $q = 256 - 0.001p^2$

- a) Find the **<u>elasticity of demand</u>** function.
- b) If the Airline is currently charging 300 Riyals for the ticket, do you recommend that they <u>raise or lower</u> <u>this price</u> based on the elasticity of demand from part (a)? **Explain.**

Q.12 (6 points): Find the area of the region bounded by the curves: $y = x^2 - 4$ and y = 2x - 1

Q.13 (6 points): The output of a factory is changing at the rate $Q'(t) = 2t^3 - 3t^2 + 10t + 3$ units/hour, where t is the number of hours after the morning shift begins at 8 A.M. **How many units** are produced between 10 A.M. and noon?

<u>Q.14 (5 points)</u>: A manufacturer supplies $S(p) = 0.5p^2 + 3p + 7$ hundred units of a certain commodity to the market when the price is *p* dollars per unit. Find the **average supply** as the price varies from p = \$2 to p = \$5.

Q.15 (6 points): Compute the partial derivatives, f_x , f_y , f_{xx} , f_{yy} , f_{xy} , and f_{yx} . $f(x, y) = 5x^2y + e^{xy} + 3$