

Prince Sultan University

Department of Mathematical Sciences

Final Exam Semester I, 2005/2006 Fall (051)

26th January, 2006

MATH 111 – CALCULUS I

Mr. Khaled Naseralla

Time Allowed	: 3 hours
Maximum Poin	ts: 100 points

Name of the student : _____

:_____

:_____

ID number

Section

For All The Students:

- Answer all the questions.
- This exam consists of <u>a total of 8 pages</u> <u>and 14 questions.</u>
- Show your working in the space provided for each question.
- Show all the key steps of your work.
- Scientific, non-programmable calculators are allowed.

Question	Maximum score	Your Score
Q.1	5	
Q.2	5	
Q.3	6	
Q.4	5	
Q.5	6	
Q.6	12	
Q.7	9	
Q.8	5	
Q.9	5	
Q.10	12	
Q.11	8	
Q.12	7	
Q.13	5	
Q.14	10	
Total	100	

Q.1: Find the natural domain of
$$f(x) = \sqrt{\frac{x-1}{x^2-9}}$$
. (5 points)

0.2: For what values of
$$x$$
 is the following function discontinuous? (5 points)

$$f(x) = \begin{cases} \frac{x-1}{\sqrt{x}-1} & x > 1\\ 5-3x & -2 \le x \le 1\\ \frac{6}{x-4} & x < -2 \end{cases}$$

<u>0.3</u>: Find an equation of the line perpendicular to y - 2x = 4 and passing (6 points) through the point (1, 2).

<u>0.4</u>: Consider the function $f(x) = 3x^2 - 2x$ over the interval [2,2.5]. (5 points)

- a) Compute dy and Δy for the given interval.
- b) Compute the average rate of change of f on the given interval.
- <u>*Q.5:*</u> Given that f(0) = 2, g(0) = 3, f'(0) = 5, g'(0) = 7, and $f'(3) = \prod$. (6 points) Compute:

a) h'(0) if h(x) = f(x)g(x)b) k'(0) if $k(x) = (f \circ g)(x)$

<u>Q.6:</u> Find the limits:

(12 points)

a) $\lim_{x \to 3^{-}} \frac{x}{x - 3}$ b) $\lim_{x \to 3^{-}} \frac{\sin 3x}{x - 3}$

b)
$$\lim_{x \to 0} \frac{1}{5x}$$

c) $\lim_{x \to 3} \frac{\sqrt{3x} - x}{x^2 - 9}$

d)
$$\lim_{x \to -4} \frac{2x+8}{x^2+x-12}$$

e)
$$\lim_{x \to -\infty} \frac{\sqrt{5x^2 - 2}}{x + 3}$$

f)
$$\lim_{x \to \infty} \frac{5x + 15x^{7}}{10x^{9} - 4x}$$

Q.7: Consider the function $f(x) = \begin{cases} \frac{1}{x^{2}} & \mathbf{x} < -1 \\ 2 & -1 \le x < 1 \\ 3 & x = 1 \\ x + 1 & 1 < x \le 2 \\ \frac{-1}{(x - 2)^{2}} & \mathbf{x} > 2 \end{cases}$ (9 points)

Determine the following limits:

- **a)** $\lim_{x \to -1^+} f(x) =$
- **b)** $\lim_{x \to -1^{-}} f(x) =$
- **c)** $\lim_{x \to -1} f(x) =$
- **d)** $\lim_{x \to 1} f(x) =$
- **e)** $\lim_{x \to -3} f(x) =$
- **f)** $\lim_{x \to 5} f(x) =$

<u>Q.8:</u> Find the equation of the tangent line to the curve of the graph of $x^2y^2 - 2x = 4 - 4y$ at (2,-2) **<u>Q.9:</u>** Consider the function $f(x) = \begin{cases} a+bx & x > 2\\ 7 & x = 2\\ b+ax^2 & x < 2 \end{cases}$ (5 points)

Determine the values of the constants a and b that will make the function f(x) continuous everywhere.

Q.10: Find
$$\frac{dy}{dx}$$
 of each of the following. Simplify your answer
a) $y = \frac{x^2 \sin^2 x}{(x+1)(x+2)^2}$
(12 points)

b)
$$y = \frac{\tan 2x^2}{(2x+1)^2}$$

c)
$$y = x^{\sqrt{x}} e^{3x+4}$$

d) $y = \sqrt{x} \tan^{-1} 5x$

e)
$$\frac{x-y^3}{y+x^2} = x+2$$

f)
$$y = \ln(\cos^5(3x^4))$$

<u>0.11</u>: Consider the function $f(x) = x^6 - 2x^3$ on the interval [-2, 2]. (8 points)

- a) Find the x and y -coordinates of all the relative extrema and classify each as a relative maximum or a relative minimum.
- b) Find the x and y -coordinates of all the absolute extrema and classify each as an absolute maximum or an absolute minimum.
- c) Find the x -coordinates of all the inflection points.
- d) How would the above answers change if the domain of f(x) were all real numbers.

<u>0.12</u>: The position function of a particle moving along a coordinate line is given by $s(t) = t^3 - 6t^2 + 1$, $t \ge 0$ where s is in meters(m) and t is in seconds(s) (7 points)

- a) At what time is the particle stopped?
- b) When is the particle speeding up? Slowing down?
- c) Find the total distance traveled by the particle from time t = 0 to time t = 6.
- **<u>0.13</u>**: A box with a square base and with no top has a surface area of $108m^2$. (5 points) Find its dimensions that will maximize the volume.

<u>0.14</u>: Let $f(x) = x^3 - 3x^2 - 24x$, find (10 points)

- a) The intervals on which f(x) is increasing.
- b) The intervals on which f(x) is decreasing.
- c) The intervals on which f(x) is concave up.
- d) The intervals on which f(x) is concave down.
- e) Give a rough sketch of f(x) showing the relative maxima and minima and the inflection points.

Prince Sultan University

Department of Mathematical Sciences

Final Exam Semester I, 2005/2006 Fall (051) 26th January, 2006

MATH 111 - CALCULUS I

Mr. Khaled Naseralla

Time Allowed : 3 hours Maximum Points: 100 points

Name of the student : _____

:_____

•

ID number

Section

For All The Students:

- Answer all the questions.
- This exam consists of <u>a total of 8 pages</u> <u>and 14 questions.</u>
- Show your working in the space provided for each question.
- Show all the key steps of your work.
- Scientific, non-programmable calculators are allowed.

Question	Maximum score	Your Score
Q.1	5	
Q.2	5	
Q.3	6	
Q.4	5	
Q.5	6	
Q.6	12	
Q.7	9	
Q.8	5	
Q.9	5	
Q.10	12	
Q.11	8	
Q.12	7	
Q.13	5	
Q.14	10	
Total	100	

Q.1: Find the natural domain of
$$f(x) = \sqrt{\frac{x-1}{x^2-9}}$$
. (5 points)

2

(5 points)

<u>*Q.2:*</u> For what values of x is the following function <u>discontinuous</u>?

$$f(x) = \begin{cases} \frac{x-1}{\sqrt{x}-1} & x > 1\\ 5-3x & -2 \le x \le 1\\ \frac{6}{x-4} & x < -2 \end{cases}$$

<u>0.3</u>: Find an equation of the line perpendicular to y - 2x = 4 and passing (6 points) through the point (1,2).

<u>0.4</u>: Consider the function $f(x) = 3x^2 - 2x$ over the interval [2,2.5]. (5 points)

- a) Compute dy and Δy for the given interval.
- b) Compute the average rate of change of f on the given interval.

<u>Q.5</u>: Given that f(0) = 2, g(0) = 3, f'(0) = 5, g'(0) = 7, and $f'(3) = \prod$. (6 points) Compute:

a)
$$h'(0)$$
 if $h(x) = f(x)g(x)$

b)
$$k'(0)$$
 if $k(x) = (f \circ g)(x)$

a)
$$\lim_{x \to 3^{-}} \frac{x}{x-3}$$

Find the limits:

b)
$$\lim_{x \to 0} \frac{\sin 3x}{5x}$$

c)
$$\lim_{x \to 3} \frac{\sqrt{3x} - x}{x^2 - 9}$$

d)
$$\lim_{x \to -\infty} \frac{\sqrt{5x^2 - 2}}{x + 3}$$

e)
$$\lim_{x \to -4} \frac{2x+8}{x^2+x-12}$$

f)
$$\lim_{x \to \infty} \frac{5x + 15x^7}{10x^9 - 4x}$$

Q.7: Consider the function
$$f(x) = \begin{cases} \frac{1}{x^2} & x < -1 \\ 2 & -1 \le x < 1 \\ 3 & x = 1 \\ x + 1 & 1 < x \le 2 \\ \frac{-1}{(x - 2)^2} & x > 2 \end{cases}$$
 (9 points)

Determine the following limits:

- **a)** $\lim_{x \to -1^+} f(x) =$
- **b)** $\lim_{x \to -1^{-}} f(x) =$
- **c)** $\lim_{x \to -1} f(x) =$
- **d)** $\lim_{x \to 1} f(x) =$
- **e)** $\lim_{x \to -3} f(x) =$
- **f)** $\lim_{x \to 5} f(x) = \int_{x \to 5} f(x) dx$
- **<u>Q.8</u>:** Find the equation of the tangent line to the curve of the graph of $x^2y^2 2x = 4 4y$ at (2, -2) (5 points)

<u>0.9</u>: Consider the function $f(x) = \begin{cases} a+bx & x > 2 \\ 7 & x = 2 \\ b+ax^2 & x < 2 \end{cases}$ (5 points)

Determine the values of the constants a and b that will make the function f(x) continuous everywhere.

Q.10: Find
$$\frac{dy}{dx}$$
 of each of the following. Simplify your answer

(12 points)

a)
$$y = \frac{x^2 \sin^2 x}{(x+1)(x+2)^2}$$

b)
$$y = \frac{\tan 2x^2}{(2x+1)^2}$$

c)
$$y = \sqrt{x} \tan^{-1} 5x$$

d)
$$y = x^{\sqrt{x}} e^{3x+4}$$

e)
$$\frac{x-y^3}{y+x^2} = x+2$$

f)
$$y = \ln(\cos^5(3x^4))$$

<u>0.11</u>: Consider the function $f(x) = x^6 - 2x^3$ on the interval [-2, 2].

- b) Find the x and y -coordinates of all the absolute extrema and classify each as an absolute maximum or an absolute minimum.
- c) Find the x -coordinates of all the inflection points.
- d) How would the above answers change if the domain of f(x) were all real numbers.

- **<u>0.12</u>**: The position function of a particle moving along a coordinate line is given by $s(t) = t^3 6t^2 + 1$, $t \ge 0$ where s is in meters(m) and t is in seconds(s) (7 points)
 - a) At what time is the particle stopped?
 - b) When is the particle speeding up? Slowing down?
 - c) Find the total distance traveled by the particle from time t = 0 to time t = 6.

8

<u>0.14</u>: Let $f(x) = x^3 - 3x^2 - 24x$, find

- a) The intervals on which f(x) is increasing.
- b) The intervals on which f(x) is decreasing.
- c) The intervals on which f(x) is concave up.
- d) The intervals on which f(x) is concave down.
- e) Give a rough sketch of f(x) showing the relative maxima and minima and the inflection points.

(10 points)