

Time Allowed: 120 minutes

Maximum points: 40 points

Name: _

(First)

(Last)

ID Number: _____

Section:_____

Important Instructions:

- 1. You may use CASIO scientific calculator that does not have programming or graphing capabilities.
- 2. You may NOT borrow a calculator from anyone.
- 3. You do NOT get special consideration if you forget your calculator.
- 4. Don't use notes or any notebook.
- 5. There should be NO talking during the examination.
- 6. Your exam will be taken immediately without any warning if your mobile is seen or heard.
- 7. You must show all your work beside the problem. Be organized.

(Middle)

- 8. You may use the back of the pages for extra space, but be sure to indicate that on the page with the problem.
- 9. This examination has 4 problems, some with several parts. Make sure that your paper has all these problems

Problem	Max points	Student's Points
1	10	
2	10	
3	10	
4	10	
Total	40	

Q1 (I) (*6 points*) Complete the following statements with the best answer.

- a) When a 99% confidence interval is calculated instead of a 95% confidence interval with *n* being the same, the margin of error will be _____.
- b) The best point estimate of the population proportion is ______.
- c) When the population standard deviation is unknown and the sample size is less than 30, ______table should be used in computing a confidence interval for the mean.
- d) A sample of 25 novels has a standard deviation of 9 pages. The 95% confidence interval of the population standard deviation is: (______, ____).

e) A survey of 90 families showed that 40 owned at least one television set. The 85% confidence interval of the true proportion of families who own at least one television set is (______, ____).

(II) (4 points) In a chi-square independence test with 7 rows and 8 columns, the test statistic is 75

- a) Find the critical value. Use $\alpha = 0.005$
- b) Approximate the *P*-value.
- c) Make the decision.

Q2 (I) (5 *points*) A copyeditor thinks the standard deviation for the number of pages in a romance novel is smaller than 9. A sample of 25 novels has a standard deviation of 6 pages.

- a) State the hypotheses.
- b) Find the critical value. Use $\alpha = 0.01$
- c) Compute the test value.
- d) Approximate the *P*-value.
- e) Make the decision.
- (II) (5 points) The following ANOVA table is given.

Source	DF	SS	MS	F
Between				8
Within		990.5	3.5	
Total		1270.5		

- a) Complete the ANOVA table.
- b) Find the *P*-value of the test.
- c) Make the decision.
- d) What is the critical value for the Scheffe test? Use $\alpha = 0.05$

Q3 (I) (2 points) Complete the following statements with the best answer.

- a) When computing the *F* test value for the difference between two variances, you always place the ______ variance in the numerator of the fraction.
- b) To test the equality of two proportions, you would use _____ test.
- c) The mean value of the *F* is approximately equal to _____.

(II) (*4 points*) For a difference between two variances test, the following information is given:

Sample 1: $s_1 = 8\sqrt{2}$, $n_1 = 23$, sample 2: $s_2 = 9\sqrt{2}$, $n_2 = 16$, Two-tailed

- a) Find the critical value. Use $\alpha = 0.01$
- b) Compute the test value
- c) Approximate the *P*-value.

(III) (*1 point*) What is the rank of 7 in the following data?

12, 10, 6, 2, 7, 5, 7, 4, 5, 7, 7, 6, 9

- (IV) (3 *points*) In a Wilcoxon Rank Sum test, $n_1 = n_2 = 20$, and R = 345.
 - a) Compute the test statistic.

- b) Find the critical value(s). Use $\alpha = 0.1$
- c) Find the *P*-value.

Q4 (4 points) (I) Given that, $\sum_{i=1}^{7} (y'_i - \overline{y})^2 = 91.2$ and $\sum_{i=1}^{7} (y - y'_i)^2 = 15.3$

- a) Calculate and interpret the coefficient of determination.
- b) Calculate the standard error of the estimate.
- (II) (2 points) Given that,

$$\sum_{i=1}^{8} X_{i} = 56 \qquad \sum_{i=1}^{8} X_{i}^{2} = 536 \qquad \sum_{i=1}^{8} Y_{i} = 605 \qquad \sum_{i=1}^{8} Y_{i}^{2} = 47887 \qquad \sum_{i=1}^{8} X_{i}Y_{i} = 3726.$$

Obtain the equation of the best fitting line.

(III) (4 points) In a Kruskal-Wallis test, $n_1 = \cdots = n_{10} = 8$, and H = 20.5

- a) Find the critical value. Use $\alpha = 0.01$
- b) Approximate the *P*-value.
- c) Make the decision.

Good-Luck