

Prince Sultan University MATH 113

Final Examination First Semester 2014/2015, Term 141

Saturday, 3rd January 2015 Dr. Bahhaeldin Abdalla & Dr. Ahmed Kaffel

Time Allowed: 120 minutes *Maximum points: 70 points*

Name:	ID Number #
varie.	$1D$ rullibel π

Important Instructions:

- 1. You may use CASIO scientific calculator that does not have programming or graphing capabilities.
- 2. You may NOT borrow a calculator from anyone.
- 3. You do NOT get special consideration if you forget your calculator.
- **4.** Don't use notes or any notebook.
- **5.** There should be NO talking during the examination.
- **6.** Your exam will be taken immediately without any warning if your mobile is seen or heard.
- 7. You must show all your work beside the problem. Be organized.
- 8. You may use the back of the pages for extra space, but be sure to indicate that on the page with the problem.
- 9. This examination has 12 problems, some with several parts. Make sure that your paper has all these problems.

Problem	Max points	Student's Points
1	11	
2,3	12	
4,5,6,7	12	
8,9,10	13	
11	10	
12	12	
Total	70	

(a)
$$\int \left(\frac{1-x}{x}\right)^2 dx$$

(b)
$$\int \frac{\tan^3 x}{\sec^3 x} \ dx$$

(c)
$$\int_{0}^{b} \frac{d}{dx} \left(e^{\arctan x} \right) dx$$

(d)
$$\int \frac{dx}{\sqrt{e^x - 1}}$$

2. (8 points) Evaluate each integral.

(a)
$$\int \frac{8x+6}{x^3+3x^2} dx$$

(b)
$$\int \frac{x^2}{(4-x^2)^{3/2}} dx$$

3. (4 points) Find the area of the surface obtained by rotating the curve $y = \frac{x^4}{16} + \frac{1}{2x^2}$, $1 \le x \le 2$ about the y-axis.

4. (4 points) Evaluate $\int_{-2}^{1} \frac{1}{x^4} dx$ if possible.

5. (2 points) If
$$\int_{0}^{6} \frac{f(x)}{\pi} dx = 10$$
 and $\int_{0}^{4} f(x) dx = 7$, find $\int_{4}^{6} f(x) dx$.

6. (4 points) Find the average value of the function $f(x) = x \sec x \tan x$ on the interval $\left[0, \frac{\pi}{3}\right]$.

- 7. (2 points) Suppose $\sum a_n = 4$ and s_n is the *n*th partial sum of the series. (a) Find $\lim_{n \to \infty} a_n$
 - (b) Find $\lim_{n\to\infty} s_n$

8. (5 points) Find the volume of the solid obtained by rotating the region bounded by x = 5 and $x = 9 - y^2$ about the line x = -1.

9. (3 points) Determine whether the sequence $a_n = \frac{\ln n}{\sqrt{n}}$ is convergent or divergent. **Justify your answer in details.**

10. (5 points) Determine whether the series $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{\sqrt{n}}{n+1}$ is absolutely convergent, conditionally convergent or divergent. **Justify your** answers in details.

11. ((3+3+4) points) Determine whether the following series converges or diverges. **Justify your answers in details.**

(a)
$$\sum_{n=1}^{\infty} \frac{\left(-5\right)^{2n}}{n^2 9^n}$$

(b)
$$\sum_{n=1}^{\infty} \left(\frac{5}{n^2} + \frac{2^n}{3^n} \right)$$

(c)
$$\sum_{n=2}^{\infty} \frac{1}{n\sqrt{\ln n}}$$

12. ((4+8) points) Find the radius of convergence and interval of convergence of the foolowing series.

(a)
$$\sum_{n=0}^{\infty} n^n \left(x - 2 \right)^n$$

(b) $\sum_{n=1}^{\infty} \frac{(x+3)^n}{n5^n}$