

Prince Sultan University

Department of Mathematical Sciences

Semester II, 2012 SPRING (Term 112) May 27, 2012

MATH 111 – Calculus I Final Exam

Time Allowed: 120 minutesMaximum Points: 100 points

Name of the student:

ID number :_____

Section :-----

Important Instructions:

- 1. You may use a scientific calculator that does not have programming or graphing capabilities.
- 2. You may NOT borrow a calculator from anyone.
- 3. You may NOT use notes or any textbook.
- 4. There should be NO talking during the examination.
- 5. Your exam will be taken immediately if your mobile phone is seen or heard
- 6. Looking around or making an attempt to cheat will result in your exam being cancelled
- 7. This examination **has 9 problems**, some with several parts and a total of 7 pages. Make sure your paper has all these problems.

Question	Maximum score	Your Score
Q.1	20	
Q.2 , Q.3	15	
Q.4 , Q.5	13	
Q.6	20	
Q7,Q.8	14	
Q.9	18	
Total	100	

<u>Q.1 (20 points)</u>: Find the derivative, $\frac{dy}{dx}$. (Simplify as much as possible) **Steps** (i) $y = 3^x \ln(1+x^2)$

(ii)
$$y = \sin^{-1}(1+x^2)$$

(iii)
$$y = \frac{\sqrt{x \sin x}}{1 + e^{1 - 2x}}$$

(iv)
$$y = x^{\sin(3x)}$$

Show Your

(iv)
$$y = \tanh^{-1}\left(\frac{2\pi}{x}\right)$$

Q.2 (7 points): Let f(x) = x|x-1|. Discuss the differentiability of f.

Q.3 (8 points): For y = f(x) such that $xe^{xy} = y + \sin^2(x) + 2$, find the equation of the tangent line to the graph of f at x = 0.

<u>Q.4 (6 points)</u>: Prove that the equation $e^{x-1} + x + 2 = 0$ has exactly one real root.

<u>OR</u>

Q.4 (6 points): Let f be a differentiable function on $(-\infty, \infty)$. If f(1) = -2, $f'(x) \ge 2$, for every $x \in [1, 6]$. Show that $f(6) \ge 8$. (Hint: Use Mean Value Theorem)

Q.5 (7 points): Find the value of the constant k such that the function g

is continuous everywhere
$$g(x) = \begin{cases} \frac{\sin(kx)}{2x} & \text{if } x \neq 0\\ 7 & \text{if } x = 0 \end{cases}$$

<u>Q.6 (20 points)</u>: Evaluate the following limits:

(i)
$$\lim_{x \to 1} \frac{x^2 + x - 2}{x^2 - 3x + 2}$$

(ii)
$$\lim_{x \to 1} \frac{\sqrt{x} - 1}{-3 + \sqrt{10 - x}}$$

(iii)
$$\lim_{x\to 0} x^2 \sin\left(\frac{1}{x}\right)$$

(iv)
$$\lim_{x \to 0} \frac{2x - |x|}{|3x| - 2x}$$

(v)
$$\lim_{x \to +\infty} \left(\frac{x}{2+x}\right)^{3x}$$

<u>Q.7 (7 points)</u>: A cylindrical can, open at the top, is to hold 600 cm^3 of liquid. Find the height and radius that minimize the amount of material needed to manufacture the can.

Q.8 (7 points): A ladder 10 m long leans against a vertical building. If the bottom of the ladder slides away from the building horizontally at rate of 2 m/sec., how fast is the ladder sliding down the building when the top of the ladder is 5 m above the ground?

<u>Q.9 (18 points)</u>: Consider the function $f(x) = \frac{2x^2}{x^2 - 1}$.

(a) Find the horizontal and vertical asymptotes of f, if they exist.

- (b) Find critical number(s) for f and the intervals where f is increasing or decreasing.
- (c) Find the local extrema of f, if any.
- (d) Find the inflection point(s) of f and the intervals where f is concave up or down.
- (e) Sketch the graph of f showing all significant features.