

Prince Sultan University Department of Mathematical Sciences

Final Exam

Semester I, 2007 Fall (071) 24th January, 2008

Α

MATH 101 – Finite Mathematics

Time Allowed : $2\frac{1}{2}$ hours

Maximum Points: **100 points**

Name of the student:

ID number

Section

Instructor : Mr. Khaled Naseralla

Important Instructions:

- 1. You may use a scientific calculator that does not have programming or graphing capabilities.
- 2. You may NOT borrow a calculator from anyone.
- 3. You may NOT use notes or any textbook.

:

- 4. There should be NO talking during the examination.
- 5. Your exam will be taken immediately if your mobile phone is seen or heard
- 6. Looking around or making an attempt to cheat will result in your exam being cancelled
- 7. This examination has 18 problems, some with several parts.
- 8. There is a total of 8 pages. Make sure your paper has all these pages and problems.

Question	Maximum score	Your Score
Q.1, Q.2 & Q.3	20	
Q.4, Q.5, Q.6 & Q.7	20	
Q.8, Q.9 & Q.10	15	
Q.11 & Q.12	14	
Q.13, Q.14 & Q15	16	
Q.16, Q.17 & Q18	15	
Total	100	

<u>Q.1(6 points)</u>: Write <u>*True*</u> or <u>*False*</u> for each of the following statements.

- If two events in a sample space have no outcomes in common, they are said to be independent.
- 2) The empty set is a subset of itself.
- 3) If E and F are independent events, then $P(E \cup F) = P(E) + P(F) P(E)P(F)$.
- There is a 50% chance of rain today and a 50% chance of rain tomorrow.
 Assuming independence, there is a 75% chance of rain either today or tomorrow.
- 5) No point other than a corner of the feasible region can be a solution to a linear programming problem.
- 6) Matrices of the same dimensions can always be added.

<u>Q.2(10 points)</u>: Circle the correct answer.

(c) x_1 = 3 , x_2 = 0 , $p_{max} = 25$

1) The final tableau for a standard maximum problem is:

	RHS	s 2 4	s 1 -2	x ₂ 0	x 1 1	р [0	
The solution of the original problem is:	3	-1	3	1	0	0	
	25						
(b) x ₁ = 5 , x ₂ = 3 , $p_{\rm max} = 25$	= 25	$p_{\rm max.}$	2,	, x 2=	3	x 1=	(a)

2) If the events A and B are independent and if P(A/B) = 0.1 and P(B) = 0.3, then P(A) is:

(d) $x_1=0$, $x_2=0$, $p_{max}=25$

(a) 0.1 (b) 0.03 (c) 0.3 (d) 0.4

3) There are 7 people up for 3 different awards. In how many ways can the awards be given if a person cannot receive more than one award?

(a) C(7,3) (b) 21 (c) 7!3! (d) P(7,3)

4) Find where the lines 3x+4y=10 and 2x-y=3 intersect.

(a) (2,1) (b) $(\frac{3}{2},0)$ (c) (2,-1) (d) (3,-2)

5) Suppose that P(A) = 0.4, P(B) = 0.3, and $P(A \cap B) = 0.1$. Then $P(\overline{A \cup B}) =$

(a) 0.4 (b) 0.7 (c) 0.6 (d) 0.8

6) Determine which of the following matrices is(are) in Reduced Row Echelon Form(RREF)

	$\begin{bmatrix} 3 & 1 \\ 2 & 1 \\ 3 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 4 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$		•		
(a) C only	(b) B and C only (c) A , B , and C only	(d) B , C , and D only		
7) How many 4-letter words can be formed by rearranging the letters in the word "seek "?					
(a) 6	(b) 2 ⁴	(c) 12	(d) 24		
8) A large basket of fruit contains 3 oranges, 2 apples and 5 bananas. If a fruit is chosen at random, what is the probability of getting an orange or an apple?					
(a) $\frac{7}{10}$	(b) $\frac{4}{5}$	(c) $\frac{1}{2}$	(d) None of the above		
9) A box contains 10 white balls and 6 red balls. In how many ways can 4 balls be drawn from the box if exactly 3 balls are white?					
(a) C (10,3)	(b) <i>P</i> (10,3). <i>P</i> (6,1)	(c) C (10,3).C (6,1)	(d) <i>P</i> (10,3)		
10) A pair of dice is rolled once, what are the odds for rolling a sum of 4 ?					
(a) 3 to 36	(b) 1 to 11	(c) 5 to 31	(d) 1 to 12		

<u>Q.3(4 points)</u>: Find an equation of the line passing through (-3,5) and is perpendicular to the line passing through (6,2) and (1,-8)

Q.4(6 points): A company producing bottles estimates the fixed cost for setting up the production line at \$50,000 and the direct costs for each bottle will be \$1.5. The sales department determined the selling price at \$2 per bottle.

- a) How many bottles must be sold to break even?
- b) How many bottles must the company sell to make a profit of 30,000?

Q.5(4 points): Let
$$A = \begin{bmatrix} 2 & 3 \\ 1 & -2 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix}$, and $C = \begin{bmatrix} 2 & 1 \\ 1 & 0 \\ 3 & 2 \end{bmatrix}$

Find
$$C \cdot (A + B)$$

Q.6(5 points): Mohammed invested an amount of money 8 years ago in an account that pays 8% per year compounded quarterly. His investment is now worth \$25,000. How much did he originally invest?

Q.7(5 points): If Jack deposits \$150 at the end of each month in a savings account earning interest at the rate of 9% per year compounded monthly. How much will he have in his account at the end of 5 years?

Q.10(5 points): Solve the following system. Use any appropriate method. x - y + z = 4 2x - y = 6x + 2y - 3z = 8

Q.11(7 points): Use the simplex method to solve the following linear programming problem: Maximize $P = 6x_1 + x_2$ subject to the constraints:

$$3x_1 + x_2 \le 15$$

$$x_1 + x_2 \le 10 x_1 \ge 0, x_2 \ge 0$$

Use the simplex method to minimize	$C = 3x_1 + 2x_2$	subject to the constraints:
		$x_1 + x_2 \ge 10$
(Use any appropriate method)		$x_1 - x_2 \le 15$
		$x_1 \ge 0, x_2 \ge 0$
		Use the simplex method to minimize $C = 3x_1 + 2x_2$ (Use any appropriate method)

Q.13(4 points): 15 students are going hiking on their spring break. They plan to travel in three vehicles. One vehicle seating 7 students, one seating 5, and one seating 3 students. In how many ways can the students group themselves for their trip?

Q.14(8 points):

A math class has a total of 50 students. 25 of them have dark hair, 32 have brown eyes, and 15 have both dark hair and brown eyes.

- a) Draw a Venn Diagram representing the class above.
- b) How many students in the class either dark hair or brown eyes?
- c) How many students in the class have brown eyes but don't have dark hair.
- d) Find the probability that a student in the class has brown eyes given that he has dark hair.

Q.15(4 points): In Europe, 88% of all households have a television.

51% of all households have a television and a VCR.

72% of all households have a VCR.

What is the probability that a household has a VCR given that it has a television?

<u>Q.16(4 points)</u>: In a shipment of 100 televisions, 6 are defective. If a person buys 3 televisions from that shipment, what is the probability that 2 of them are defective?

<u>Q.17(5 points)</u>: A basketball player hits 70% of his free throws. Assuming independence on successive throws, What is the probability of

a) missing the first throw and then scoring 3 in a row?

b) scoring 6 free throws out of 10, in any order?

<u>Q.18(6 points):</u> The following table summarizes the students attending a university:

- A student is selected at random from the university.
- a) Find the probability that the student is male.
- b) Find the probability that the student is a female and studying business.
- c) Find the probability that the student is a female, given that the student is a business student.

	Computer C	Business B	Total
Male, M	350	700	1050
Female, F	325	550	875
Total	625	1250	1875