

Prince Sultan University

Department of Mathematical Sciences

Final Exam

Semester II, 2007 SPRING (062)

13th June, 2007

MATH 113 - CALCULUS II

Time Allowed : 120 minutes Mr. Khaled Naseralla Maximum Points: 100 points

Name of the stude	ent :
ID number	:
Section	:

For All The Students:

- Answer all the questions.
- This exam consists of <u>9 questions and</u> <u>a total of 8 pages.</u>
- Show your working for each question with all the key steps.
- Only scientific, non-programmable calculators are allowed.

Maximum Score	Your Score
30	
10	
10	
6	
10	
10	
6	
8	
10	
100	
	30 10 10 6 10 10 6 8 10

Q. 1 (5 points each): Evaluate the following integrals:

$$\mathbf{a)} \quad \int x^3 \ln x dx$$

$$\mathbf{b)} \quad \int \frac{x+4}{x^3+3x^2+2x} dx$$

$$c) \int_{0}^{\frac{\pi}{3}} \frac{\sin^3 x}{\cos x} dx$$

$$d) \quad \int x \tan^{-1}(x) dx$$

$$e) \quad \int \frac{x}{\sqrt{1-x^4}} \, dx$$

f)
$$\int_{1}^{\sqrt{2}} x^3 \sqrt{x^2 - 1} dx$$

<u>Q.2 (5 points each):</u> Determine the divergence or convergence of the improper integral. If it converges, find its value.

$$\mathbf{a)} \quad \int\limits_{0}^{\infty} x e^{-\frac{x^2}{2}} dx$$

$$\mathbf{b)} \quad \int\limits_{-\infty}^{+\infty} \frac{1}{1+x^2} dx$$

Q.3 (5 points each):

Evaluate the following:(Show all your steps)

a)
$$\sum_{k=4}^{50} (3k-2)$$

<u>Q.4 (6 points):</u> Find the volume of the solid generated when the region enclosed by the curves $x = y^2$ and x = 4 is revolved about the line y = -3

<u>Q.5 (5 points each):</u> Find the following limits:

$$\mathbf{a)} \quad \lim_{x \to \infty} (x^2 e^{-3x})$$

b)
$$\lim_{x \to 0} \left(\frac{1}{x^2} - \frac{\cos 3x}{x^2} \right)$$

<u>Q.6(5 points each):</u> Use n=4 to approximate the integral $\int_{-1}^{1} (2x+x^2)dx$ by:

a) the trapezoid approximation

b) Simpson's rule

<u>Q.7 (6 points):</u> A particle moves along an S-axis. Use the given information to find the position function, S(t) of the particle.

$$a(t) = 4\cos 2t$$
; $v(0) = -1$; $S(0) = -3$

- <u>Q.8 (8 points):</u> a) Use the second Fundamental Theorem of Calculus to find F'(x) given that $F(x) = \int_{0}^{x} \left(\sqrt[3]{t} t^{2}\right) dt$
 - b) Given that $\int_0^1 f(x)dx = 2$; $\int_1^2 f(x)dx = -5$ and $\int_0^3 f(x)dx = 4$ Evaluate the integral $\int_2^3 5f(x)dx$

c) Evaluate the integral $\int_{0}^{4} |x-2| dx$ (show all your steps)

Q.9 (5 points each): Solve the following differential equation:

a)
$$\cos^2 x \cdot \frac{dy}{dx} + y = 1$$
 ; $y(0) = 5$

b)
$$y' = \frac{xy}{1+x^2}$$