Prince Sultan University

Deanship of Educational Services PYP Department / Mathematics

COURSE DETAILS:

ORIENTATION MATHEMATICS II		MATH 002		FINAL EXAM	В
Semester:	Fall Semester Term 191				
Date:	Saturday December 14, 2019				
Time Allowed:	120 minutes (2 hours))			

STUDENT DETAILS:

Student Name:	
Student ID Number:	
Section:	
Instructor's Name:	

INSTRUCTIONS:

- You may use a scientific calculator that does not have programming or graphing capabilities. NO borrowing calculators.
- NO talking or looking around during the examination.
- NO mobile phones. If your mobile is seen or heard, your exam will be taken immediately.
- Show all your work and be organized.
- You may use the back of the pages for extra space, but be sure to indicate that on the page with the problem.

GRADING:

	Page 1	Page 2	Page 3	Page 4	Page 5	Total	Total
Questions							
Marks	10	10	19	18	23	80	40

Q.1B (20 points) Choose the correct answer

1) Which shaded region is the <u>solution set</u> for the system of inequalities? $\begin{cases} 3x - y \le -3 \\ x + 2y \ge 6 \end{cases}$

- 2) Use the following determinant to find the value of $x \cdot \begin{vmatrix} 2 & x \\ 6 & 9 \end{vmatrix} = 12$
 - A) x = 27
 - B) x = 5
 - C) x = 1
 - D) x = -1
- 3) Expand the logarithmic expression as much as possible. $\log\left(\frac{x^4 \cdot \sqrt[3]{x+5}}{x^2}\right)$
 - A) $4\log x + 3\log(x+5) 2\log x$
 - B) $4\log x + \frac{1}{3}\log(x+5) 2\log x$
 - C) $\log x^4 + \log(x+5)^{\frac{1}{3}} \log x^2$
 - D) $4\log x + \frac{1}{3}\log x + \frac{1}{3}\log 5 2\log x$
- 4) Find the equation of the parabola with the given information. Focus (15,0); Directrix: x = -15
 - A) $y^2 = 60x$
 - B) $y^2 = 15x$
 - C) $y^2 = -60x$
 - D) $x^2 = 60y$
- 5) A building that is 122 meter tall casts a shadow 180 meter long. Find the angle of elevation of the sun to the nearest degree.
 - A) 43°
 - B) 47°
 - C) 56°
 - D) 34°

You must write the correct answer to each question in the box below

Question	1	2	3	4	5
Answer					

- 6B) If $\tan \theta = -\frac{2}{5}$ and $\sin \theta > 0$, find the **exact value** of $\cos \theta$
 - A) $\cos \theta = \frac{5\sqrt{29}}{29}$
 - B) $\cos \theta = -\frac{\sqrt{29}}{2}$
 - $C) \quad \cos \theta = -\frac{5\sqrt{29}}{29}$
 - D) $\cos \theta = -\frac{\sqrt{21}}{5}$
- 7) The reference angle for $\theta = -240^{\circ}$ is:
 - A) -60°
 - B) 30°
 - C) 120°
 - D) 60°
- 8) Find the **domain** of the logarithmic function: $f(x) = 2 + \log_3(x 5)$
 - A) $(2,\infty)$
 - B) $\mathbb{R} \{5\}$
 - C) $(5,\infty)$
 - D) $\left(-\infty,5\right)$
- 9) Find the **phase shift** of $y = -5\cos(2\pi x 8\pi)$ is:
 - A) 4
 - B) 1
 - C) -5
 - D) 4π
- 10) Find the equation of the ellipse in the standard form with vertices: (5,0), (-5,0) and with foci: (3,0), (-3,0)
 - A) $\frac{x^2}{25} \frac{y^2}{16} = 1$
 - B) $\frac{x^2}{25} + \frac{y^2}{16} = 1$
 - C) $\frac{x^2}{34} + \frac{y^2}{25} = 1$
 - D) $\frac{x^2}{16} + \frac{y^2}{25} = 1$

You must write the correct answer to each question in the box below

Question	6	7	8	9	10
Answer		*			

Q.2B (9 points): Solve the following system of linear equation using the inverse matrix of the

coefficients.
$$\begin{cases} x + 2z = 6 \\ -x + 2y + 3z = -5 \\ x - y = 6 \end{cases}$$

Q.3 (6 points): Use Cramer's Rule to solve the following system for z = 0 only: $\begin{cases} x + 2z = 3 \\ 2x + 3y = 10 \\ 2y - z = 6 \end{cases}$

Q.4 (4 points): Find the algebraic expression of $\sec\left(\tan^{-1}\left(\frac{x}{3}\right)\right)$ given that x is positive. Ssow all your steps

Q.5B (8 points): Find the solution set for each of the following equations.

a)
$$\log_2(x-3) = 2 + \log_2(x+2) - \log_2 x$$

b)
$$8e^{6x-5} + 3 = 27$$

Q.6 (6 points): Let $f(x) = -2^{x+2} + 3$.

- a) Find the domain
- b) Find the range
- c) Find the equation of the asymptote.
- d) Sketch the graph

O.7 (4 points): Us Sine or Cosine formula and reference angle to find the exact value. Show all your steps. Don't use the calculator directly.

$$\cos(160^{\circ})\cos(40^{\circ}) + \sin(160^{\circ})\sin(40^{\circ})$$

Q.8B (6 points): Solve the following equation: $2\sin^2 x + 3\sin x + 1 = 0$ on the interval $\left[0,360^\circ\right]$

Q.9 (8 points): Given that
$$A = \begin{bmatrix} -3 & 2 \\ -5 & 4 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & -6 \\ 4 & -8 \end{bmatrix}$

Solve for matrix X in the matrix equation: $BX - 3A = 2I_2$

Q.10 (9 points): Given the conic section: $25x^2 - 9y^2 = 225$

- a) Find the coordinates of the center
- b) Find the coordinates of the vertices
- c) Find and locate of the foci
- d) Find the equations of the asymptotes, if any
- e) Graph the conic section

Prince Sultan University

Deanship of Educational Services PYP Department / Mathematics

COURSE DETAILS:

ORIENTATION MATHEMATICS II		MATH 002	FINAL EXAM	A
Semester:	emester: Fall Semester Term 191			
Date:	Saturday December 14, 2019			
Time Allowed:	120 minutes (2 hours)			

STUDENT DETAILS:

Student Name:	
Student ID Number:	
Section:	
Instructor's Name:	

INSTRUCTIONS:

- You may use a scientific calculator that does not have programming or graphing capabilities. NO borrowing calculators.
- NO talking or looking around during the examination.
- NO mobile phones. If your mobile is seen or heard, your exam will be taken immediately.
- Show all your work and be organized.
- You may use the back of the pages for extra space, but be sure to indicate that on the page with the problem.

GRADING:

	Page 1	Page 2	Page 3	Page 4	Page 5	Total	Total
Questions							
Marks	10	10	18	23	19	80	40

Choose the correct answer Q.1A (20 points)

- 1) Find the <u>equation</u> of the parabola with the given information. Focus (15,0); Directrix: x = -15
 - A) $x^2 = 60y$
 - B) $y^2 = -60x$
 - C) $v^2 = 60x$
 - D) $y^2 = 15x$
- 2) If $\tan \theta = -\frac{2}{5}$ and $\sin \theta > 0$, find the exact value of $\cos \theta$
 - A) $\cos \theta = -\frac{5\sqrt{29}}{29}$ B) $\cos \theta = -\frac{\sqrt{21}}{5}$

 - C) $\cos \theta = -\frac{\sqrt{29}}{2}$ D) $\cos \theta = \frac{5\sqrt{29}}{29}$
- 3) A building that is 122 meter tall casts a shadow 180 meter long. Find the angle of elevation of the sun to the nearest degree.
 - A) 47°
 - B) 43°
 - C) 34°
 - D) 56°
- 4) Find the **phase shift** of $y = -5\cos(2\pi x 8\pi)$ is:
 - A) 1
 - B) -5
 - C) 4π
 - D) 4
- 5) Find the **domain** of the logarithmic function: $f(x) = 2 + \log_3(x-5)$
 - A) $\left(-\infty,5\right)$
 - B) $(5,\infty)$
 - C) $\mathbb{R} \{5\}$
 - D) $(2,\infty)$

You must write the correct answer to each question in the box below

Question	1	2	3	4	5
Answer					

6A) Find the equation of the ellipse in the standard form with vertices: (5,0), (-5,0) and with foci: (3,0), (-3,0)

A)
$$\frac{x^2}{34} + \frac{y^2}{25} = 1$$

B)
$$\frac{x^2}{16} + \frac{y^2}{25} = 1$$

C)
$$\frac{x^2}{25} - \frac{y^2}{16} = 1$$

D)
$$\frac{x^2}{25} + \frac{y^2}{16} = 1$$

7) Use the following determinant to find the **value of** $x \cdot \begin{vmatrix} 2 & x \\ 6 & 9 \end{vmatrix} = 12$

A)
$$x = 5$$

B)
$$x=1$$

C)
$$x = -1$$

D)
$$x = 27$$

8) Expand the logarithmic expression as much as possible. $\log \left(\frac{x^4 \cdot \sqrt[3]{x+5}}{x^2} \right)$

A)
$$4\log x + \frac{1}{3}\log(x+5) - 2\log x$$

B)
$$4\log x + \frac{1}{3}\log x + \frac{1}{3}\log 5 - 2\log x$$

C)
$$4\log x + 3\log(x+5) - 2\log x$$

D)
$$\log x^4 + \log(x+5)^{\frac{1}{3}} - \log x^2$$

9) Which shaded region is the **solution set** for the system of inequalities? $\begin{cases} 3x - y \le -3 \\ x + 2y \ge 6 \end{cases}$

- 10) The **reference angle** for $\theta = -240^{\circ}$ is:
 - A) 30°
 - B) -60°
 - C) 60°
 - D) 120°
- You must write the correct answer to each question in the box below

Question	6	7	8	9	10
Answer					

Q.2A (8 points): Find the solution set for each of the following equations.

a)
$$\log_2(x-3) = 2 + \log_2(x+2) - \log_2 x$$

b)
$$8e^{6x-5} + 3 = 27$$

Q.3 (6 points): Let $f(x) = -2^{x+2} + 3$.

- a) Find the domain
- b) Find the range
- c) Find the equation of the asymptote.
- d) Sketch the graph

O.4 (4 points): Us Sine or Cosine formula and reference angle to find the exact value. Show all your steps. Don't use the calculator directly.

$$\cos(160^{\circ})\cos(40^{\circ}) + \sin(160^{\circ})\sin(40^{\circ})$$

Q.5A (6 points): Solve the following equation: $2\sin^2 x + 3\sin x + 1 = 0$ on the interval $\left[0,360^{\circ}\right]$

Q.6 (8 points): Given that
$$A = \begin{bmatrix} -3 & 2 \\ -5 & 4 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & -6 \\ 4 & -8 \end{bmatrix}$

Solve for matrix X in the matrix equation: $BX - 3A = 2I_2$

Q.7 (9 points): Given the conic section: $25x^2 - 9y^2 = 225$

- a) Find the coordinates of the center
- b) Find the coordinates of the vertices
- c) Find and locate of the foci
- d) Find the equations of the asymptotes, if any
- e) Graph the conic section

Q.8A (9 points): Solve the following system of linear equation using the inverse matrix of the

coefficients.
$$\begin{cases} x + 2z = 6 \\ -x + 2y + 3z = -5 \\ x - y = 6 \end{cases}$$

Q.9 (6 points): Use Cramer's Rule to solve the following system for
$$zonly$$
:
$$\begin{cases} x + 2z = 3 \\ 2x + 3y = 10 \\ 2y - z = 6 \end{cases}$$

Q.10 (4 points): Find the algebraic expression of $\sec\left(\tan^{-1}\left(\frac{x}{3}\right)\right)$ given that x is positive. Show all your steps