

Prince Sultan University

Math 113 Final Exam First Semester, Term 121 Wednesday, January 9, 2013

Time Allowed: 135 minutes

Student Name:	
Student ID #:	
Section Number:	
Instructor's Name:	

Important Instructions:

- 1. You may use a scientific calculator that does not have programming or graphing capabilities.
- 2. You may NOT borrow a calculator from anyone.
- 3. You may NOT use notes or any textbook.
- 4. Talking during the examination is NOT allowed.
- 5. Your exam will be taken immediately if your mobile phone is seen or heard.
- 6. Looking around or making an attempt to cheat will result in your exam being cancelled.
- 7. This examination has 13 problems, some with several parts. Make sure your paper has all these problems.

Problems	Max points	Student's Points
1, 2, 3	16	
4, 5	9	
6	15	
7, 8	15	
9, 10	10	
11	10	
12	15	
13	10	
Total	100	

1. (6 points) The graph of f is shown. Evaluate the following integrals:

a)
$$\int_{0}^{5} f(x)dx$$

c)
$$\int_{0}^{9} f(x)dx$$

2. (5 points) Let $g(x) = \int_{3x}^{x^3} \sqrt{t} \sin t \, dt$. Find g'(x).

3. (5 points) Find the area enclosed by the curve $y = x^3 - x^2 - 2x$ and the x-axis.

4. (5 points) Find the volume of the solid that results when the region bounded by the curve $y = 4 - x^2$ and the x-axis is revolved about the line x = 3.

5. (4 points) Find the arc length of the curve $y = \sqrt{1-x^2}$ between x = -1 and x = 1.

6. (15 points) Evaluate each of the following integrals:

a)
$$\int \frac{x+1}{\sqrt{3-2x-x^2}} \, dx$$

b)
$$\int \cos(x)\cos(2x) dx$$

c)
$$\int \frac{2}{\sqrt{x^2 - 6x}} \, dx$$

7. (10 points) Evaluate each of the following integrals:

a)
$$\int (\cos^4 x - \sin^4 x) dx$$

$$b) \int \frac{1}{x\sqrt{x+1}} \, dx$$

8. (5 points) Use Comparison Test to determine whether the integral converges or diverges:

$$\int_{1}^{\infty} \frac{3 + 2\sin x}{5x^2} dx$$

9. (5 points) Determine whether the integral converges or diverges. Find the value of integral if it converges:

$$\int_{1}^{5} \frac{2}{\sqrt{5-x}} \, dx$$

10.(5 points) Determine whether the sequence $a_n = \{\ln n - \ln(3n+2)\}_{n=1}^{\infty}$ converges or diverges. If it converges, find its limit.

11. (10 points) Determine whether the following series absolutely convergent, conditionally convergent or divergent. **Justify your answers in details.**

a)
$$\sum_{k=1}^{\infty} (-1)^{k+1} \frac{k}{3^{k+1}}$$

b)
$$\sum_{n=6}^{\infty} (-1)^{n+5} \frac{n}{(n+5)^2}$$

12. (15 points) Determine whether the following series converges or diverges. **Justify** your answers in details.

a)
$$\sum_{n=1}^{\infty} \frac{5^n}{(11 + \cos^2(2))^n}$$

b)
$$\sum_{n=1}^{\infty} \frac{1}{3n+8}$$

c)
$$\sum_{k=1}^{\infty} \frac{e^{\frac{1}{k}} + 1}{k^3}$$

13. (10 points) Find the interval of convergence and radius of convergence of the following power Series:

$$\sum_{n=1}^{\infty} \frac{(2x-5)^n}{n^2}$$