

Prince Sultan University

Department of Mathematical Sciences

Semester II, 2013 SPRING (Term 122) May 25, 2013

MATH 111 – Calculus I Final Exam

Time Allowed : 120 minutes Maximum Points : 100 points

Name of the student:

ID number

Dr. Younis Zaidan	Dr. Mohamed Siddique	Mr. Khaled Naseralla
Section 223	Section 224	Section 225
10 11	11 12	8 9

Important Instructions:

- 1. You may use a scientific calculator that does not have programming or graphing capabilities.
- 2. You may NOT borrow a calculator from anyone.
- 3. You may NOT use notes or any textbook.
- 4. There should be NO talking during the examination.
- 5. Your exam will be taken immediately if your mobile phone is seen or heard
- 6. Looking around or making an attempt to cheat will result in your exam being cancelled
- 7. This examination <u>has 12 problems</u>, some with several parts and a total of 8 pages. Make sure your paper has all these problems.

Question	Maximum score	Your Score
Q.1	16	
Q.2 , Q.3 , Q.4	15	
Q.5 , Q.6	13	
Q.7 , Q.8	12	
Q.9	16	
Q.10 , Q.11	12	
Q.12	16	
Total	100	

<u>Q.1 (16 points)</u>: Find the derivative, $\frac{dy}{dx}$. (Simplify as much as possible)

(i)
$$y = \tan\left(\frac{t}{1+t^2}\right)^2$$

(ii)
$$y = \frac{\sqrt{x+1} \cdot (2-x)^5}{(x+3)^7}$$

(iii)
$$y = e^{\cos(x)} + \cos(e^{3x})$$

(iv)
$$y = \sqrt{x} \sin^{-1}\left(\sqrt{x}\right)$$

<u>Q.2 (5 points)</u>: Find $\frac{dy}{dx}$: $x + y\sqrt{1 + 2x} = 2x \cos(y)$

<u>Q.3 (5 points)</u>: At what point(s) on the curve $y = [\ln(x+4)]^2$ is the tangent horizontal?

Q.4 (5 points): If f(x) and g(x) are differentiable functions at x = 2 such that f(2) = 3, f'(2) = -1, h(2) = 2, h'(2) = -1, and $g(x) = xf(x) + \frac{f(x)}{h(x)}$. Find g'(2)

<u>Q.5 (8 points)</u>: Let $f(x) = \begin{cases} x^2 - 1 & \text{if } x \le 1 \\ k(x - 1) & \text{if } x > 1 \end{cases}$

(i) For what values of k is f(x) continuous?

(ii) For what values of k is f(x) differentiable?

<u>Q.6 (5 points)</u>: Suppose that $3 \le f'(x) \le 5$ for all values of *x*. Show that $18 \le f(8) - f(2) \le 30$ by using the Mean Value Theorem.

Q.7 (6 points): Find the absolute maximum and absolute minimum values of the function $f(x) = \frac{x}{x^2 + 1}$ on the interval [0, 2].

Q.8 (6 points): Let $f(x) = x^4 (x-1)^3$.

- (a) Find the critical numbers of f, if any.
- (b) Find the local minimum and local maximum values of f, if any.

<u>Q.9 (16 points)</u>: Evaluate the following limits:

a)
$$\lim_{x \to 1} \frac{2x^2 + 3x - 5}{x - 1}$$

b)
$$\lim_{t \to 0} \frac{\cos t}{t}$$

c)
$$\lim_{x \to 0} x^4 \cos\left(\frac{3}{x}\right)$$

d)
$$\lim_{x \to 0} \frac{2x^9 - \sin^9 x}{5x^9}$$

Q.10 (6 points): Find the following limit by using L'Hospital's Rule:

 $\lim_{x \to \infty} \left(1 + \frac{a}{x} \right)^{bx}$ where *a* and *b*

are constant numbers.

Q.11 (6 points): A box with a square base and open top must have a volume of 4,000 cm³. Find the dimensions of the box that minimize the amount of material used.

<u>Q.12 (16 points):</u> Let $f(x) = \frac{x^2 + 1}{x^2 - 4}$.

- a) Find the domain.
- b) Find the *x* and *y*-intercepts.
- c) Find the vertical and horizontal Asymptotes.
- d) Find the critical points numbers.
- e) Find the intervals on which f is increasing and the intervals on which f is decreasing.
- f) Find the local minimum and local maximum values, if any.
- g) Find the intervals on which f is concave up and the intervals on which f is concave down.
- h) Find the inflection points.
- i) Sketch the graph of *f*. (Show asymptotes).