

COURSE DETAILS:

ORIENTATION M	IATHEMATICS I	MATH 001	FINAL EXAM A
Semester:	Spring Semester Tern	n 182	
Date:	Saturday April 20, 2018	3	
Time Allowed:	180 minutes (3 hours)		

STUDENT DETAILS:

Student Name:	
Student ID Number:	
Section:	
Instructor's Name:	

INSTRUCTIONS:

- You may use a scientific calculator that does not have programming or graphing capabilities. NO borrowing calculators.
- NO talking or looking around during the examination.
- NO mobile phones. If your mobile is seen or heard, your exam will be taken immediately.
- Show all your work and be organized.
- You may use the back of the pages for extra space, but be sure to indicate that on the page with the problem.

GRADING:

	Page 1	Page 2	Page 3	Page 4	Page 5	Page 6	Total	Total
Questions								
Marks	10	10	20	16	22	22	100	40

Q1) Which test is used to determine whether a graph is a function or not?

A) The diagonal line test
B) The horizontal line test
C) The vertical line test
D) The even power test

, **1**

Q2) Given that $f(x) = \frac{x^3 + 3}{2}$, then the inverse $f^{-1}(x)$ is equal to:

A) $\frac{x^3}{2} + \frac{3}{2}$ B) $2\sqrt[3]{x-3}$ C) $\sqrt[3]{2x-3}$ D) $\frac{1}{2}(\sqrt[3]{x-3})$

Q3) Find the slope of the line passing through (4,2) and (-17,2).

A) 1 B) 0

C) -13

D) -21

Q4) If c is a zero of a polynomial function f(x), then

```
A) x + c is a factor of f(x)
B) x^2 - c is a factor of f(x)
C) x^2 + c is a factor of f(x)
D) x - c is a factor of f(x)
```

Q5) Which of the following represents the graph

A) $(3,\infty) \cup (-\infty,7]$ B) $(3,\infty) \cap (-\infty,7]$ C) $[3,\infty) \cap (-\infty,7)$ D) $[3,\infty) \cup (-\infty,7)$

You must write the correct answer to each question in the box below

Question	1	2	3	4	5
Answer					

Q6) Which expression is equivalent to $\left(\frac{-4x^2}{2x^{-1}}\right)^2$

A)
$$\frac{1}{4x^{3}}$$

B) $\frac{1}{4x^{6}}$
C) $\frac{-1}{4x^{6}}$
D) $4x^{6}$

Q7) Perform the indicated operations and simplify: $2(4t-1)-(t^2+1)-4t(t-5)$

A) $-5t^{2} + 28t - 3$ B) $-3t^{2} + 28t - 3$ C) $-5t^{2} + 28t - 2$ D) $-5t^{2} + 12t - 3$ Q8). Let f(x) = 2x, then $\frac{f(x+h) - f(x)}{h}$ is equal to: A) 1 B) 2 C) h D) 2h Q9) Let f(x) = 8 - 8x and g(x) = -4x + 8, then (f + g)(x) is

A) -4x + 16B) -4x + 8C) 4xD) -12x + 16

Q10) The domain of the function $f(x) = \frac{x^2}{x^2 + 12}$ is:

A) $(-12,\infty)$ B) $(-\infty,-12) \cup (-12,\infty)$ C) $(-\infty,\infty)$ D) $(-\infty,0) \cup (0,\infty)$

You must write the correct answer to each question in the box below

Question	6	7	8	9	10
Answer					

COURSE DETAILS:

ORIENTATION N	IATHEMATICS I	MATH 001	FINAL EXAM B
Semester:	Spring Semester Term 1	82	
Date:	Saturday April 20, 2018		
Time Allowed:	180 minutes (3 hours)		

STUDENT DETAILS:

Student Name:	
Student ID Number:	
Section:	
Instructor's Name:	

INSTRUCTIONS:

- You may use a scientific calculator that does not have programming or graphing capabilities. NO borrowing calculators.
- NO talking or looking around during the examination.
- NO mobile phones. If your mobile is seen or heard, your exam will be taken immediately.
- Show all your work and be organized.
- You may use the back of the pages for extra space, but be sure to indicate that on the page with the problem.

GRADING:

	Page 1	Page 2	Page 3	Page 4	Page 5	Page 6	Total	Total
Questions								
Marks	10	10	20	16	22	22	100	40

Q1) Which test is used to determine whether a graph is a function or not?

- A) The diagonal line test
- B) The vertical line test
- C) The horizontal line test
- D) The even power test

Q2) Given that $f(x) = \frac{x^3 + 3}{2}$, then the inverse $f^{-1}(x)$ is equal to:

A) $\sqrt[3]{2x-3}$ B) $2\sqrt[3]{x}-3$ C) $\frac{x^3}{2} + \frac{3}{2}$ D) $\frac{1}{2}(\sqrt[3]{x}-3)$

Q3) Find the slope of the line passing through (4,2) and (-17,2).

A) 1 B) -21 C) -13 D) 0

Q4) If c is a zero of a polynomial function f(x), then

A) x + c is a factor of f(x)B) x-c is a factor of f(x)C) $x^{2}+c$ is a factor of f(x)D) $x^{2}-c$ is a factor of f(x)

Q5) Which of the following represents the graph

- A) $(3,\infty) \cup (-\infty,7]$ B) $[3,\infty) \cap (-\infty,7)$
- C) $(3,\infty) \cap (-\infty,7]$
- D) $\overline{[3,\infty)\cup(-\infty,7)}$

You must write the correct answer to each question in the box below

Question	1	2	3	4	5
Answer					

Q6) Which expression is equivalent to $\left(\frac{-4x^2}{2x^{-1}}\right)^2$

A)
$$\frac{1}{4x^{3}}$$

B) $\frac{4x^{6}}{4x^{6}}$
C) $\frac{-1}{4x^{6}}$
D) $\frac{1}{4x^{6}}$

Q7) Perform the indicated operations and simplify: $2(4t-1)-(t^2+1)-4t(t-5)$

A) $-5t^{2} + 12t - 3$ B) $-3t^{2} + 28t - 3$ C) $-5t^{2} + 28t - 2$ D) $-5t^{2} + 28t - 3$

Q8). Let f(x) = 2x, then $\frac{f(x+h)-f(x)}{h}$ is equal to:

- A) 1
 B) *h*C) 2
- D) 2*h*

Q9) Let f(x) = 8 - 8x and g(x) = -4x + 8, then (f + g)(x) is

A) -4x + 16B) -12x + 16C) 4xD) -4x + 8

Q10) The domain of the function $f(x) = \frac{x^2}{x^2 + 12}$ is:

A) $(-\infty, \infty)$ B) $(-\infty, -12) \cup (-12, \infty)$ C) $(-12, \infty)$ D) $(-\infty, 0) \cup (0, \infty)$

You must write the correct answer to each question in the box below

Question	6	7	8	9	10
Answer					

<u>Q11</u>) (4+4pts) Expand and simplify the expressions:

a) $(x^2 + 2)^3$

b)
$$\left(\sqrt{5x} - y^2\right)\left(\sqrt{5x} + y^2\right)$$

<u>Q12</u>) (4pts) Solve the equation 5(x + 3) + 9 = -2(x - 2) - 1

<u>Q13</u> (4pts) Perform the indicated operation and simplify $\frac{x}{x-3} - \frac{2}{x^2-9}$

<u>Q14</u>) (4pts) Solve the equation $3x^2 + 5x - 7 = 0$ by using the "<u>Quadratic Formula</u>"

Q16) (4pts) Find the distance between the points: (-2,5) and (10,0).

Q17) (4 pts.) Find the vertex, and x and y intercepts of $f(x) = x^2 + 4x + 3$, then sketch the graph.

Q18) (4 pts.) Find the equation of the line that passes through (3,2) and is parallel to the line 4x+3y=-9

<u>Q19</u> (6pts) Solve $|2x + 3| \ge 5$. Express the solution set in interval notation.

Q20) (4pts) Solve the equation $\sqrt{2x+13} = x+7$

Q21) (6pts) Use the transformations of the graph f(x) = |x|, to sketch the graph of g(x) = 2|x+3|-1. Find the x and y intercepts.

Q22) (2+4 pts) Given that $f(x) = x^3 - 5x^2 - 4x + 20$

a) Use synthetic division and the Remainder Theorem to find f(1)

b) Given that 5 is a zero of f(x), use synthetic division and the Factor Theorem to find the other zeros of f(x).

<u>Q24</u>) (6pts) Find <u>all</u> (real and imaginary) solutions of the equation $x^7 - x^3 = 0$

Q25) (6pts) Find a 4th degree polynomial function with real coefficients that has 1, -1, 3i and -3i as zeros and f(2) = 39

<u>Q26</u>) (10 pts) Let $f(x) = -3x^5(x-1)^2(x+2)$

- a) Find the end behavior of f(x).
- b) Find the *x*-intercepts of f(x). Find the **multiplicity** of each zero and determine whether the graph crosses or touches the *x*-axis at each zero.

c) Find the *y*-intercept of f(x)

d) Sketch the graph of f(x)