

Prince Sultan University

Department of Mathematics and Physical Sciences

Math 223
Final Examination
Semester I, Term 101
Saturday, January 22, 2011

Time Allowed: 120 minutes

Name:	
Student Number:	

Important Instructions:

- 1. You may use a scientific calculator that does not have programming or graphing capabilities.
- 2. You may NOT borrow a calculator from anyone.
- 3. You may NOT use notes or any textbook.
- 4. There should be NO talking during the examination.
- 5. Your exam will be taken immediately if your mobile phone is seen or heard.
- 6. Looking around or making an attempt to cheat will result in your exam being cancelled.
- 7. This examination has 9 problems, some with several parts. Make sure your paper has all these problems.

Problems	Max points	Student's Points
1	30	
2,3,4	21	
5,6	16	
7	15	
8,9	18	
Total	100	

Question.1 (2 points each) Write True(T) or False(F) for each of the following statements:

	Statements	True(T) or False(F)
1.	The two planes $2y = 8x - 4z + 5$ and $x = \frac{1}{2}z + \frac{1}{4}y$ are parallel.	
2.	The distance between $P_1(3,4)$ and $P_2(5,7)$ is 4.	
3.	If A and B are square matrices of the same size, then $\det(A+B) = \det(A) + \det(B)$	
4.	If A is any matrix, then $rank(A) = rank(A^T)$.	
5.	A homogenous system of linear equations with more unknowns than equations has infinitely many solutions.	
6.	If kA is invertible matrix, then $(kA)^{-1} = kA^{-1}$.	
7.	The cosine of the angle between $u = (1,-3)$ and $v = (2,4)$ is 42° .	
8.	$\begin{vmatrix} a & b & c \\ d & e & f \\ g & i & h \end{vmatrix} = - \begin{vmatrix} g & i & h \\ d & e & f \\ a & b & c \end{vmatrix}$	
9.	The vectors $v_1 = (-1,2,6)$, $v_2 = (3,-2,4)$ and $v_3 = (-3,6,18)$ span \mathbb{R}^3 .	
10.	If $\{v_1, v_2, v_3\}$ is linearly independent set, then so is the set $\{kv_1, kv_2, kv_3\}$ for every nonzero scalar k .	
11.	If A is an $n \times n$ matrix and if $T_A : R^n \to R^n$ is multiplication by A . If T_A is one—to—one then A is expressible as a product of elementary matrices.	
12.	If an $n \times n$ matrix A has n distinct eigenvalues, then A is not diagonalizable.	
13.	The solution of $y' = ay$ is $y = ce^{ax}$, $a, c \in R$.	
14.	A square matrix A is invertible if and only if $\lambda = 0$ is an eigenvalue of A .	
15.	Let A be an $n \times n$ matrix. If A is ivertible, then $Ax = 0$ has only the trivial solution.	

Question.2 (8 points)(3.4)	Let $u = (-1.2.4)$	v = (1,-1.3)
----------------------------	--------------------	--------------

a) Find the vector component of u along v (Pr $oj_v u$).

b) If w = (-1,1,5). Find the scalar triple product $u \bullet (v \times w)$.

Question.3 (7 points)(6.1)

Let $u = (u_1, u_2)$ and $v = (v_1, v_2)$. Show that $\langle u, v \rangle = 4u_1v_1 + u_2v_1 + u_1v_2 + 4u_2v_2$ is an inner product on \mathbb{R}^2 .

Question.4 (6 points)(3.5)

Find an equation for the plane passing through the given points P(5,4,3), Q(4,3,1), R(1,5,4).

Question.5 (7 points) (8.3) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by T(x, y) = (2x + 3y, x - y). Determine whether the linear transformation is one—to—one. If so, find $T^{-1}(x, y)$.

Question.6 (9 points)(8.1) Consider the basis $S = \{v_1, v_2\}$ for R^2 where $v_1 = (1,1)$ and $v_2 = (3,-1)$. Let $T: R^2 \to R^2$ be the linear operator such that $T(v_1) = (1,-2)$ and $T(v_2) = (-4,1)$. Find a formula for $T(x_1, x_2)$. Then Compute T(2,-3).

Question.7(15 points) (9.1)

- a) Write the system $\begin{cases} y_1' = y_1 + 4y_2 \\ y_2' = 2y_1 + 3y_2 \end{cases}$ in terms of matrix notations.
- b) Find the eigenvalues and the corresponding eigenvectors for the coefficient matrix A of the system.

c) Construct a matrix P that diagonalaizes A. Find P^{-1} .

d) Find the general solution and the particular solution that satisfies the initial conditions $y_1(0) = 0, y_2(0) = 0.$

Question.8 (12 points)(8.2) Let A be a matrix such that $A = \begin{bmatrix} 2 & 2 & -1 & 0 \\ -1 & -1 & 2 & -3 \\ 1 & 1 & -2 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$.

a) Solve the system $Ax = \begin{bmatrix} 1 & 1 & 1 & -1 \end{bmatrix}^T$

- b) Find the rank and nullity of A.
- c) Determine a basis for the solution space of the system $Ax = \begin{bmatrix} 1 & 1 & 1 & -1 \end{bmatrix}^T$.

Question.9 (6 points)(7.1) Let $A = \begin{bmatrix} 1 & 3 & 7 & 11 \\ 0 & \frac{1}{2} & 3 & 8 \\ 0 & 0 & 4 & 4 \\ 0 & 0 & 0 & 2 \end{bmatrix}$. Find the eigenvalues of A. Find the eigenvalues of

A.⁷. Determine Det(A).