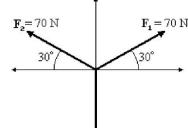

Part 1:

(1 point each)

the correct answer to the nearest For the following questions, please circle number. Please read each question carefully

- The position, x, of an object is given by the equation $x = A + Bt + Ct^2$, where t refers 1. to time. What are the **dimensions** of *A*, *B*, and *C* respectively?
 - (A) distance, distance distance
- (B) distance, time, time


- (C) distance, time, time²
- (D) distance, distance/time, distance/time²
- (E) distance/time, distance/time², distance/time³
- 2. When is the average velocity of an object equal to the instantaneous velocity?
 - (A) always
- (B) never
- (C) only when the velocity is constant
- (D) only when the velocity is increasing at a constant rate
- (E) only when the velocity is decreasing at a constant rate
- 3. The figure below represents the position of a particle as it travels along the **x-axis**. What is the *average speed* of the particle between t = 1 s and t = 4 s?
 - (A) 1.0 m/s
- (B) 1.3 m/s
- (C) 0.67 m/s
- (D) 0.50 m/s (E) 0.25 m/s

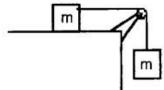
- The velocity of a particle as a function of time is given by $v_{(t)} = 2.3 \left(\frac{m}{s}\right) + 4.1 \left(\frac{m}{s^2}\right) t - 6.2 \left(\frac{m}{s^3}\right) t^2$. What is the average acceleration of the particle between t = 1.0 s and t = 2.0 s?
 - (A) -12.5 m/s^2
- (B) -14.5 m/s^2 (E) 0 m/s^2
- (C) 12.5 m/s^2

- (D) 14.5 m/s^2
- 5. A car is traveling at 26.0 m/s when the driver suddenly applies the brakes, giving the car a constant deceleration. The car comes to a stop in a distance of $120.0 \, m$. How fast was the car moving when it was 60.0 m past the point where the brakes were applied?
 - (A) 22.5 m/s
- (B) 18.3 m/s
- (C) 15.0 m/s
- (D) 12.1 m/s
- (E) 9.20 m/s

Refer to the figure below. Three forces $\vec{F}_1 = \vec{F}_2 = \vec{F}_3 = 70 N$ are acting on an object as shown in the figure. Which one of the following statements is true regarding the resultant force acting over the object?

- (A) The resultant force is 35 N.
- (B) The resultant force is 70 N.
- (C) The resultant force is 140 N.
- (D) The resultant force is 210 N.
- (E) The resultant force is 0 N.
- 7. Ahmad kicks a soccer ball with an initial velocity of 25 m/s at an angle of 30° above the horizontal. The horizontal component of the velocity of the ball is described by one of the following statements.
 - (A) It increases uniformly.
- (B) It decreases uniformly.

(C) It is zero.


- (D) It is 25 m/s.
- (E) It remains constant during the ball's flight.
- 8. A bullet is fired from ground level with a speed of 150 m/s at an angle 30.0° above the horizontal at a location where $g = 10.0 \text{ m/s}^2$. What is the vertical component of its velocity when it is at the highest point of its trajectory??
 - (A) 0 m/s.
- (B) 10 m/s.
- (C) 75.0 m/s.
- (D) 130 m/s.

- (E) 150 m/s.
- 9. A boy kicks a football with a certain initial velocity at an angle 20^{\bullet} above the horizontal. In 2.0 seconds, the ball reaches at its highest point in its trajectory. What is the initial velocity of the ball?
 - (A) 9.8 m/s
- (B) 20 m/s
- (C) 57 m/s
- (D) 4.9 m/s
- (E) 29 m/s
- 10. A 777 aircraft has a mass of $300,000 \, kg$. At a certain instant during its landing, its speed is $27.0 \, m/s$. If the braking force is $435,000 \, N$, how much further does it travel along the runway before it comes to a stop?
 - (A) 40.5 m.
- (B) 142 m.
- (C) 181 m.
- (D) 251 m.

- (E) 456 m.
- 11. A 50.0 kg crate is being pulled along a horizontal, smooth surface. The pulling force is 10.0 N and is directed 20.0° above the horizontal. What is the acceleration of the crate?
 - (A) 0.0684 m/s^2
- (B) 0.188 m/s^2
- (C) 0.200 m/s^2
- (D) 0.376 m/s^2

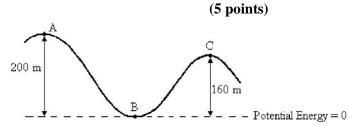
(E) 0.0728 m/s^2

12. Two identical masses are attached by a light string that passes over a small pulley, as shown in the figure below. The table and the pulley are frictionless. The masses are moving

- (A) with an acceleration less than g.
- (B) at constant speed.
- (C) with an acceleration greater than g.
- (D) with an acceleration equal to g.
- (E) with an acceleration that cannot be determined without additional information.
- 13. If you walk 5.0 m horizontally forward at a constant velocity carrying a 10 N object, the amount of work you do is
 - (A) more than 50 J. (B) equal to 50 J. (C) less than 50 J, but more than 0 J
 - (D) 0.0 J E) cannot be determine, need more information.
- 14. Two identical vertical springs S_1 and S_2 have masses $m_1 = 400 g$ and $m_2 = 800 g$ attached to them. If m_1 causes spring S_1 to stretch by 4 cm, what is the ratio of the potential energy of S_1 and S_2 ? Use $g = 10 \text{ m/s}^2$.
 - (A) 2:1 (B) 1:2 (C) 1:3 (D) 4:1((E) 1:4
- 15. A mass is attached to one end of a string. The other end of the string is attached to a rigid support. The mass is released at A and swings in a vertical arc to points B, C, and D, as shown in the figure below. Neglect air resistance and use $g = 10 \text{ m/s}^2$. At what point does the mass have the most potential energy?
 - (A) A (B) B (C) C (D) D (E) not enough information.
- **16**. Refer to the **figure** in **Question 15**, at what point does the mass have the most kinetic energy?
 - (A) A (B) B (C) C (D) D
 - (E) not enough information.

Part 2:

Please read each question carefully and <u>show your steps in the space</u> <u>provided with the appropriate units to receive partial credit</u>. Each question is graded on a 4 points scale. *Draw a Free Body Diagram when is needed*.


1. Three boxes rest side-by-side on a smooth, horizontal floor. Their masses are $5.0 \, kg$, $3.0 \, kg$, and $2.0 \, kg$, with the $3.0 \, kg$ mass in the center. A force of $50 \, N$ pushes on the $2.0 \, kg$ mass, which pushes against the other two masses. What is the contact force between the $3.0 \, kg$ mass and the $2.0 \, kg$ mass? (6 points)

Answer		

2. A roller coaster of mass 80.0 kg is moving with a speed of 20.0 m/s at position A as shown in the figure below. The vertical height at position A above ground level is 200 m.

Neglect friction and use $g = 10.0 \text{ m/s}^2$.

What is the speed of the roller coaster at point C?

Fall Semester 2010 (101) Final Exam

27/1/2011 Dr. Hayel Shehadeh

3. A two-dimensional elastic collision of two particles. Particle 1 of mass m_1 approaching a stationary particle 2 of mass m_2 . As a result of their interaction, the incident particle moves away along a line that makes an angle of 30° with its original path, and the other particle moves away along a line that makes an angle of 30° to the other side of the original path of the incident particle. What is the ratio of the masses, m_1/m_2 ? (5 points)

4. A 2.00 g bullet hits and becomes embedded in a 5.00 kg wood block which is hanging from a 1.20 m long string. This causes the block to swing through an arc of 3.50° . What was the velocity of the bullet before it hit the block? (6 points)

Answer

