

Prince Sultan University

Department of Mathematical Sciences

MATH 223 – Final Examination

Term: 062 Monday,4th June 2007 Dr. Aiman Mukheimer

Student Name:	Student ID #:
Student Manie.	Student ID II.

Time allowed: 150 minutes

Maximum points: 100 points

- 1. (6 points) Find the standard matrices for linear operators on R^2 represented by:
 - a. A rotation of 60°
 - b. An orthogonal projection on the x-axis.
 - c. The composition of a rotation of 60° , followed by an orthogonal projection on the x-axis, followed by a reflection about the line y = x.

2. (6 points) Find the volume of the parallelepiped determined by vectors u = (2, -6, 2), v = (0, 4, -2), and w = (2, 2, -4).

3. (8 points) Show that the points (-1, -2, -3), (-2, 0, 1), (-4, -1, -1) and (2, 0, 1) lie in the same plane.

4. (6 points) Find parametric equation for the line through (-2,5,0) that is parallel to the planes 2x + y - 4z = 0 and -x + 2y + 3z + 1 = 0.

5. (8 points) Determine wheather $p(x) = 1 - x + 2x^2$ and $q(x) = 2x + x^2$ are orthogonal on P_2 with respect to the inner product defined by $\langle p,q \rangle = \int_{-1}^{1} p(x)q(x)dx$.

6. (4 points) Let V be an inner product space. Show that if **u** and **v** are orthogonal vectors in V such that ||u|| = ||v|| = 1, then $||u - v|| = \sqrt{2}$.

7. (6 points) Find the eigenvalues for eigenspace of A^{25} for $A = \begin{bmatrix} -1 & -2 & -2 \\ 1 & 2 & 1 \\ -1 & -1 & 0 \end{bmatrix}$.

8. (10 points) Consider the basis $S = \{v_1, v_2\}$ for R^2 , where $v_1 = (-2,1)$ and $v_2 = (1,3)$, and let $T: R^2 \longrightarrow R^3$ be the linear transformation such that $T(v_1) = (-1,2,0)$ and $T(v_2) = (0,-3,5)$.

Find a formula for $T(x_1,x_2)$, and use that formula to find T(2,-3).

9. (8 points) Find $\ker(T)$ and determine whether the linear transformation $T: R^2 \longrightarrow R^3$, where T(x,y) = (x-y,y-x,2x-2y) is one-to-one.

10. (8 points) Let V = C[a,b] be the vector space of functions continuous on [a,b], and let $T:V \longrightarrow V$ be the transformation defined by $T(f) = 5f(x) + 3\int_a^x f(t) \ dt$. Show that T is a linear operator.

11. (8 points) Let $T: R^2 \longrightarrow R^2$ be the linear operator defined by the formula T(x,y) = (2x + y, x - 2y)

Determine whether T is one-to-one; if so find $T^{-1}(x, y)$

12. (12 points) Solve the system: $y_1' = y_1 + 3y_2$ and find the solution that satisfies the initial conditions $y_1(0) = 2$, $y_2(0) = 1$.

13. (4 points) Calculate the distance between the point (2,-5) and the line y = -4x + 2.

14. (6 points) Can we use the Wronskian to show that the set of vectors $\sin x$, $\cos x$, $x \sin x$ are linearly independent or not? (why?)