

Prince Sultan University Department of Mathematical Sciences

MATH 223 – Final Examination 12 June 2008

Time allowed: 180 minutes Dr. Bahaa Eldin Abdalla

Maximum points: 100 points

1. (4 points) For which value(s) of the constant k does the system

$$x-y=3$$

$$2x - 2y = -k$$

have no solution? Exactly one solution? Infinitely many solutions?

2. (5 points) Let $A^{-3} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & -1/8 \end{bmatrix}$. Compute tr(A) and $det(A^T)$.

3. (4 points) Let $\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = -3$. Compute $\begin{vmatrix} -2a & -2b & -2c \\ -2g & -2h & -2i \\ -2d & -2e & -2f \end{vmatrix}$.

4. (5 points) Find the area of the triangle having vertices P(1,-1,2), Q(-1,3,4), R(2,-1,1).

- 5. (6 points) Find four unit vectors that are ortogonal to $\mathbf{u} = (-1, 2, 2, -1)$.
- 6. (5 points) Find parametric equations for the line l passing through the points P(2,4,-1) and Q(5,-1,7). Where does the line intersect the xy-plane?
- 7. (4 points) Find an equation for the plane that passes through the origin and is parallel to the plane 7x + 4y 2z + 3 = 0.
- 8. (5 points) Show that the linear operator $L: R^2 \to R^2$ defined by L(x,y) = (-x-3y,x-y) is one-to-one. Find the standard matrix for the inverse operator, and find $L^{-1}(w_1,w_2)$.
- 9. (4 points) Give an example to show that the set of all 2×2 matrices A such that det(A) = 0 is not a subspace of M_{22} .

10. (6 points) Consider the following homogeneous system

$$\begin{bmatrix} 1 & -3 & 1 \\ 2 & -6 & 2 \\ 3 & -9 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

- (a) Show that the solution space of the system is a plane through the origin and find an equation for it.
- (b) Determine a basis for and the dimension of the solution space of the system
- 11. (5 points) Show that $1 + x + x^2$, $x + x^2$, and x^2 are three linearly independent vectors in P_2 . Do they form a basis for P_2 . Why?
- 12. (4 points) Let $\mathbf{v}_1 = (2, -3, 1)$, $\mathbf{v}_2 = (4, 1, 1)$, and $\mathbf{v}_3 = (0, -7, 1)$. Determine whether the set $S = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3}$ is a basis for R^3 .
- 13. (5 points) Express $\mathbf{v} = (1,1)$ as a linear combination of $\mathbf{v}_1 = (1,-1)$, $\mathbf{v}_2 = (3,0)$, $\mathbf{v}_3 = (2,1)$ in three different ways.
- 14. (4 points) Sketch the unit circle in an *xy*-coordinate system in R^2 using the weighted Euclidean inner product $\langle \mathbf{u}, \mathbf{v} \rangle = \frac{1}{4}u_1v_1 + \frac{1}{9}u_2v_2$.
- 15. (6 points) Let $\mathbf{p} = x 2x^2$ and $\mathbf{q} = 7 + 3x + 3x^2$ be two vectors in P_2 . Define an inner product on P_2 and use it to find the angle between \mathbf{p} and \mathbf{q} .
- 16. (15 points) Find the eigenvalues and bases for the eigenspaces of

$$A = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}$$
. Write a matrix P that diagonalizes A .

Compute A^{10} using the matrix P.

- 17. (4 points) Let V be an inner product space. Determine whether the function $T: V \to R$ defined by $T(\mathbf{u}) = ||u||$ is a linear transformation. Justify your answer.
- 18. (9 points) Let $L: \mathbb{R}^4 \to \mathbb{R}^2$ be the function defined by L(x, y, z, w) = (x + 2y + 3z, 4x + y + 5z + 2w).
 - (a) Find a basis for range (L) and a basis for Ker(L).
 - (b) Determine the rank and nullity of L.
