Prince Sultan University Deanship of Educational Services Department of Mathematics and General Sciences

COURSE DETAILS:

FINITE MATH	IEMATICS	MATH 101	FINAL EXAM
Semester:	Term 182		
Date:	Saturday April 20, 2019		
Time Allowed:	3 hours		

STUDENT DETAILS:

Student Name:	
Student ID Number:	
Section:	
Instructor's Name:	

INSTRUCTIONS:

- You may use a scientific calculator that does not have programming or graphing capabilities. NO borrowing calculators.
- NO talking or looking around during the examination.
- NO mobile phones. If your mobile is seen or heard, your exam will be taken immediately.
- Show all your work and be organized.
- You may use the back of the pages for extra space, but be sure to indicate that on the page with the problem.

GRADING:

	Page 1	Page 2	Page 3	Page 4	Page 5	Total	Total
Questions							
Marks	17	17	10	19	17	80	40

Q1. [6 points] Let $A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$. Show that $A^2 - 2I_3 = A$.

Q2. [6 points] The supply and demand equations for sugar have been estimated to be given by the equations S = 0.7p + 0.4, D = -0.5p + 1.6, where *p* is the price in dollars per pound and *S* and *D* are in millions of Kgs.

(a) Find the market price.

(b) What quantity of supply is demanded at this market price?

(c) Graph both the supply and demand equations.

Q3. [5 points] The owner of a restaurant needs to borrow \$12,000 from a bank to buy some equipment. The bank will give the owner a discounted loan at an 11% rate of interest for 9 months. What loan amount should be used so that the owner will receive \$12,000?

Q4. [8 points] Solve the system using matrices

$$2x - 5y + z = 3x - 3y - 2z = -14x - 11y - 3z = 1$$

Q5. [9 points] Use graph to find the maximum value of the function P = 10x + 15y

Subject to $x + 4y \le 360$ $2x + y \le 300$ $x \ge 0, y \ge 0$

Q6. [10 points] Use Simplex method to solve the linear programming problem: Maximize $z = 4x_1 + x_2$ subject to

$$3x_1 + x_2 \le 180 x_1 + 2x_2 \le 100 -2x_1 + 2x_2 \le 40 x_1 \ge 0, \qquad x_2 \ge 0$$

Q7. [4 points] Todd and Tami pay \$300 every 3 months for 6 years into an ordinary annuity paying 4% compounded quarterly. What is the value of the annuity at the end of the investment?

Q8. [3 points] How many different 9-letter words (real or imaginary) can be formed from the letters in the word "ECONOMICS"?

Q9. [6 points] Use the table to obtain probabilities for events in a sample space S.

	E	F	G
Н	0.1	.06	.08
Ι	0.3	0.14	0.32

Find the following probabilities

(a) P(E) =

- (b) P(E|I) =
- (c) $P(H|\overline{F}) =$

Q10. [6 points] Two people are selected at random from a group of 12 CBA students and 10 CCIS Students. Find the probability that

- a) Both are CBA students.
- b) Exactly one CBA student.
- c) At least one CCIS student.

- Q11. [8 points] A survey of couples in a certain country found the following: The probability that the husband has a college degree is 0.65 The probability that the wife has a college degree is 0.70. The probability that both have a college degree is 0.50.
 - a) Find the probability that at least one has a college degree.
 - b) Find the probability that the wife has a college degree and the husband does not.
 - c) Find the probability that the wife has a college degree given that the husband does not.

Q12. [4 points] Suppose that P(E) = 0.2, P(F) = 0.5 and E, F are independent events. Find the following: (a) $P(E \cap F) =$

(b) $P(E \cup F) =$

Q13. [5 points] A box contains 5 red balls, 6 green balls and 2 white balls. Three balls are drawn without replacing the others. Find the probability that the first is red, the second is green and the third is white.