PRINCE SULTAN UNIVERSITY

MATH 111 CALCULUS I

FINAL EXAM

31st JANUARY 2009

 Start:
 1:00 p.m.

 End:
 3:30 p.m.

NAME:

I.D.

٠

INSTRUCTOR:

- 1. Answer all questions
- 2. This exam consists of 1 Cover Sheet & 7 Question Sheets with 11 questions.
- 3. You can use a calculator, **NOT** a mobile phone.
- 4. No talking during the exam.
- 5. Show all working out in the space provided.

Question No.	Max. Points	Points Scored
1	10	
2,3	10	
4	15	
5,6,7	15	
8,9	12	
10	10	
11	8	
TOTAL	80	
TOTAL	40	

1) [10 points] Find the value of the following limits:

a)
$$\lim_{x \to \infty} \sqrt[3]{\frac{2+3x-x^2}{1+8x^2}}$$

b)
$$\lim_{x \to -\infty} \frac{\sqrt{5x^2 - 2}}{x + 3}$$

c)
$$\lim_{x \to 9} \frac{x-9}{\sqrt{x}-3}$$

d)
$$\lim_{x \to -2} \frac{3x^2 + 5x - 2}{5x^2 + 13x + 6}$$

e)
$$\lim_{\theta \to 0} \frac{\theta^2}{1 - \cos\theta}$$

2) [4 points] Find the value of the constant k so that the function $f(x) = \begin{cases} kx^2 & \text{if } x \le 2\\ 6x+k & \text{if } x > 2 \end{cases}$ is continuous everywhere.

3) [6 points] Given that $f(x) = x^3$

a) Find the average rate of change of f with respect to x over the interval [1, 2]

b) Find the instantaneous rate of change of f with respect to x at an arbitrary value x_0 , using the Difference Quotient [$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$].

4) [15 points] Find f'(x)a) $f(x) = \frac{\ln(3x+1)}{3x+1}$

b)
$$f(x) = e^{\sqrt{1+5x^3}}$$

c)
$$f(x) = \sin x + 2\cos^3 x + \left(\frac{3x+1}{x^2}\right)^3$$

d)
$$f(x) = e^x \sec^{-1} 2x$$

e) $f(x) = x^{\tan x}$

5) [5 points] Given that $y = x \tan^{-1} x - \ln \sqrt{1 + x^2}$, find $\frac{d^2 y}{dx^2}$ in simplest form.

6) [5 points] Find the values of x at which the graph of the function $f(x) = (2x + 7)^6 (x - 2)^5$ has horizontal tangent lines.

7) [5 points] Given that
$$\sin(x^2y^2) = x$$
, show that $\frac{dy}{dx} = \frac{1 - 2xy^2 \cos(x^2y^2)}{2x^2y \cos(x^2y^2)}$

8) [4 points] The radius of a sphere is decreasing at a constant rate of 15cm/min. Find the rate of change of the volume when the radius is 9 cm? *Hint: The volume of a sphere is given by* $V = \frac{4}{3}\pi r^3$.

9) [8 points] Find the relative maximum and minimum points for each of the following functions:

a) $f(x) = \frac{1}{4}x^4 - x^3 + x^2$, using the second derivative test

b) $f(x) = 3x^{\frac{5}{3}} - 15x^{\frac{2}{3}}$, using the first derivative test

10) [10 points] Given that $f(x) = x^3 - 3x^2 - 24x$, find the intervals on which f is increasing, decreasing, concave up, and concave down, and determine the relative maximum and minimum points and inflection points. Then sketch the graph of f. (Determine the x and y-intercepts)

11) [8 points] The position function of a particle moving along a coordinate line is given by $s(t) = t^3 - 6t^2 + 1$ for $t \ge 0$, where s is in meters(m) and t is in seconds(s).

a) Find the position, velocity, speed and acceleration at time t = 1

b) At what time is the particle stopped?

c) When is the particle speeding up? Slowing down?

d) Find the total distance travelled by the particle from time t = 0 to time t = 5.