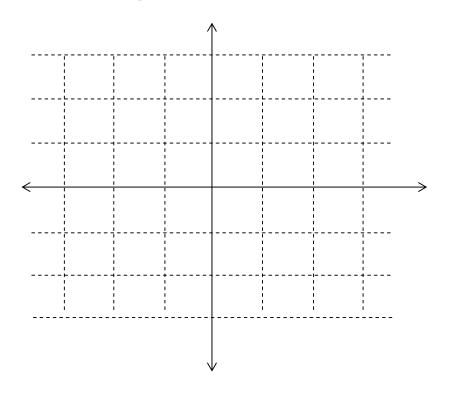
PRINCE SULTAN UNIVERSITY

MATH 111 CALCULUS I

FINAL EXAM <u>11th JUNE 2008</u>

Start:1:00 p.m.End:3:15 p.m.


Name:

I.D.

- 1. Answer all questions
- 2. This exam consists of 1 Cover Sheet & 7 Question Sheets with 17 questions.
- 3. You can use a calculator, **NOT** a mobile phone.
- 4. No talking during the exam.
- 5. Show all working out in the space provided.

Question No.	Max. Points	Points Scored
1,2,3	10	
4	10	
5,6	20	
7,8,9	16	
10,11,12	16	
13,14,15	14	
16,17	14	
TOTAL	100	
TOTAL	40	

1) [4 points] Sketch the graph of $y = -2 + \sqrt{x+3}$. Show clearly the location of the x and y intercepts.

2) [3 points] Find the domain of
$$f(x) = \frac{\sqrt{2x-3}}{x^2 - 5x + 4}$$

3) [3 points] Find an equation, in terms of *m* (the slope), for a family of lines that pass through the point (1, -2).

- 4) [10 points] Given that $y = 2x^2$ and $x_0 = 0$, $x_1 = 1$.
- a) Find the average rate of change of y with respect to x over the interval $[x_0, x_1]$.

b) Find the instantaneous rate of change of y with respect to x at the specified value of x_0 .

c) Find the instantaneous rate of change of y with respect to x at a general unspecified value of x_0 .

5) [8 points] Find the value of the following limits:

a)
$$\lim_{x \to \infty} \left(\sqrt{x^6 + 5x^3} - x^3 \right)$$

b)
$$\lim_{y \to -\infty} \frac{2 - y}{\sqrt{7 + 6y^2}}$$

6) [12 points] Find the value of the following limits:

a)
$$\lim_{x \to 2} \frac{2x^2 - 5x + 2}{5x^2 - 7x - 6}$$

b)
$$\lim_{k \to 4} \frac{k^2 - 16}{\sqrt{k} - 2}$$

c)
$$\lim_{t \to -2} \frac{t^3 + 8}{t + 2}$$

- 7) [8 points] If $f(x) = 2x^2 + 1$, find:
 - a) f'(x) using the Difference Quotient $f'(x) = \lim_{h \to 0} \frac{f(x+h) f(x)}{h}$.

b) the equation of the tangent line to the graph $y = 2x^2 + 1$ at x = -1

8) [4 points] Find the value of $\lim_{x \to 0} \frac{\sin^3 2kx}{x^3}$

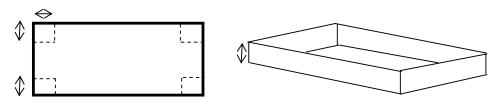
9) [4 points] Given that
$$y = x^{-3}$$
, find $\frac{d^4 y}{dx^4}\Big|_{x=1}$

10) [4 points] Given that
$$y = \frac{4x + 1}{x^2 - 5}$$
, find $\frac{dy}{dx}\Big|_{x=1}$

11) [6 points] Given that
$$y = x^2 \cos x + 4 \sin x$$
, find $\frac{d^2 y}{dx^2}$

12) [6 points] Given that
$$y = \ln\left[\frac{\cos x}{\sqrt{4-3x^2}}\right]$$
, find $\frac{dy}{dx}$ in its simplest form.

13) [4 points] Given that
$$y = \ln(1 - xe^{-x})$$
, show that $\frac{dy}{dx} = \frac{x-1}{e^x - x}$


14) [4 points] Given that $y = 3\cot^4 x$, find the equation of the tangent line at $x = \frac{\pi}{4}$ in point-slope form and slope–intercept form.

15) [6 points] Given that $xy + y^2 = 2$, a) Show that $\frac{dy}{dx} = \frac{-y}{x+2y}$

b) Show that
$$\frac{d^2 y}{dx^2} = \frac{2y(x+y)}{(x+2y)^3}$$

16) [8 points] Given that $f(x) = x^4 - 6x^2 + 5$, analyze the signs of the first and second derivatives to find the local maximum and minimum of f, discuss concavity, find the points of inflection and sketch the graph.

17) [6 points] An open box is to be made from a 3-ft by 8-ft rectangular piece of metal by cutting out squares of equal size from the four corners and bending up the sides. Find the maximum volume that the box can have.

