

PRINCE SULTAN UNIVERSITY

MATH 223 – Linear Algebra Final Examination Semester I, Term 091 Saturday, January 30, 2010

Time Allowed: 150 minutes

Name:	
I.D.	<u> </u>
Instructors Name:	Section:

- 1. Answer all questions
- 2. This exam consists of 1 Cover Sheet & 5 Question Sheets with 7 questions.
- 3. You can use a calculator, **NOT** a mobile phone.
- 4. No talking during the test.
- 5. Show all working out in the space provided.

Question No.	Max. Points	Points Scored
1,2	32	
3,4	21	
5	20	
6	16	
7	11	
TOTAL SCORE	100	

Q.1: Write True(T) or False(F) for each of the following statements.

(24pts)

1) The angle between the vectors $\mathbf{u} = (2, 2, 0)$ and $\mathbf{v} = (-1, 0, 1)$ is 60° .

(----)

- 2) Let $\mathbf{u} = 3\mathbf{i} 4\mathbf{j}$ and $\mathbf{v} = \overrightarrow{PQ}$ where P is (1,-1) and Q is (-5,7). Then $\|\mathbf{v}\| = 2\|\mathbf{u}\|$ and \mathbf{v} is in the opposite direction of \mathbf{u} .
- 3) The distance between the point (2, 1) and the line 3x + 4y = 1 is 2. (-----)
- 4) The set R^2 , with the standard addition operation and the following scalar multiplication k(x, y) = (kx, 0), is a vector space.
- 5) The set $W = \{A \in M_{22} \mid A \text{ is symmetric }\}$ is a subspace of M_{22} and dim(W) = 3.
- 6) The set $S = \{(1,0,2,0), (0,1,0,0), (0,1,1,1)\}$ is a linearly independent set in \mathbb{R}^4 .
- 7) Consider the vector space C[1,4], with the inner product $\langle f,g \rangle = \int_{1}^{4} f(x)g(x)dx$. (-----)

 If f(x) = x and g(x) = 1, then $d(\mathbf{f}, \mathbf{g}) = 3$.
- 8) If $\lambda = 0$, $\lambda = -1$ are the eigenvalues of a 2×2 matrix A with $\{(1,1)\}_{\lambda=0}$, $\{(1,2)\}_{\lambda=-1}$ (-----) as bases for the corresponding eigenspaces, then $A^{10} = \begin{bmatrix} -1 & 1 \\ -2 & 2 \end{bmatrix}$.
- 9) If A is any $n \times m$ matrix and $B = AA^T$, then B is always diagonalizable. (-----
- 10) The function $T: M_{nn} \to R$, defined by $T(A) = \det(A)$, is a linear transformation. (-----)
- 11) The standard matrix of the composition of a reflection about the x-axis followed by an orthogonal projection on the y-axis is $\begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix}$.
- 12) If $T: V \to W$ is an onto linear transformation and $\dim(V) = 6$, $\dim(W) = 3$, then nullity(T) = 2.
- **Q.2:** Find an equation of the plane that contains the line x = t, y = 1 + 3t, z = 2 t and is perpendicular to the plane x y + 2z = 5

Q.3: Let $\mathbf{u} = (4,-1,2)$ and $\mathbf{v} = (1,0,3)$. Find

(10pts)

(a) The vector component of **u** orthogonal to **v**.

(b) If $\mathbf{w} = (k, 2, -1)$, find the constant k such that \mathbf{u} , \mathbf{v} , and \mathbf{w} lie in the same plane.

Q.4: Consider the linear operator
$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
 defined by
$$\begin{cases} w_1 = x_1 + 5x_2 + 2x_3 \\ w_2 = x_1 + 2x_2 + x_3 \end{cases}$$
 (11pts)

Find bases for the kernel and the range of T, and determine whether T is one-to-one.

Q.5: Consider the set $S = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$, where $\mathbf{u}_1 = (1,0,-1), \mathbf{u}_2 = (-1,1,2), \mathbf{u}_3 = (1,2,0).$

(20pts)

(a) Show that S is a basis for R^3 .

(b) If $\mathbf{v} = (x_1, x_2, x_3)$, find in terms of x_1, x_2, x_3 the coordinate vector of \mathbf{v} relative to the basis S.

(c) If $T: \mathbb{R}^3 \to \mathbb{R}^3$ is a linear operator such that $T(\mathbf{u}_1) = (1, -1, 0), T(\mathbf{u}_2) = (-1, 2, 1), T(\mathbf{u}_3) = (1, -1, 1),$ use the result of part (b) to deduce that T has the formula $T(x_1, x_2, x_3) = (x_1, x_1 - x_2 + 2x_3, x_1 + x_3)$.

(d) Show that T is one-to-one, and then find the formula of T^{-1} .

- **Q.6:** (a) Find the eigenvalues and bases for the corresponding eigenspaces of the matrix $A = \begin{bmatrix} 0 & 2 \\ -1 & 3 \end{bmatrix}$. (16pts)
- 1- Find the general solution of the system $\begin{cases} y_1' = 2y_2 \\ y_2' = -y_1 + 3y_2 \end{cases}$ 2- Find the particular solution that satisfies the initial conditions $y_1(0) = 3$, $y_2(0) = 1$. (b) 1- Find the general solution of the system

(b) Show that the vectors $\mathbf{u} = (3, 1)$ and $\mathbf{v} = (1, 2)$ are orthogonal in this inner product space.