

PRINCE SULTAN UNIVERSITY

MATH 221 – Numerical Analysis

Final Examination

Semester 2, Term 092

Saturday, June 12, 2010

Time Allowed: 150 minutes

Name:

<u>I.D.</u>

Instructors Name:

Section:

- 1. Answer all questions
- 2. This exam consists of 1 Cover Sheet & 5 Question Sheets with 5 questions.
- 3. You can use a calculator, **NOT** a mobile phone.
- 4. No talking during the test.
- 5. Show all working out in the space provided.

Question No.	Max. Points	Points Scored
1	8	
2	8	
3	8	
4	8	
5	8	
TOTAL SCORE	40	

<u>Q1.</u> Consider the equation $x^3 + 10x - 1 = 0$.

a) Use the Bisection method for this equation on the interval [0, 0.1] to find p_2 .

b) Use Newton's method, with $p_0 = 0$, to approximate the solution of this equation accurate to within 10^{-2} .

<u>Q2.</u> Given the following data

X	8.1	8.3	8.5	8.7
f(x)	16.9441	17.56492	18.19056	18.82091

a) Use appropriate Lagrange interpolating polynomial of degree two to approximate f(8.6).

b) Use the most accurate three-point formula to approximate f'(8.5).

Q3. a) Find the third Taylor polynomial $P_3(x)$ for the function $f(x) = e^{x^2}$ about $x_0 = 0$. Then, approximate $\int_{0}^{0.5} f(x) dx$ using $\int_{0}^{0.5} P_3(x) dx$.

b) Approximate the integral $\int_{0}^{0.5} e^{x^2} dx$ using the Simpson's rule.

<u>Q4.</u> Given the initial value problem:

$y' = 1 + \frac{1}{t}y, \quad 1 \le t \le 1.5 \qquad y(1) = 2$

a) Use Euler's method and the Midpoint method, with h = 0.25, to approximate the solution.

b) Find the exact solution and then the actual errors in the Midpoint method.

t _i	(method 1) Euler's method w_i	(method 2) Midpoint method W_i	(method 2) Actual error $ y(t_i) - w_i $

<u>Q5.</u> Given the linear system $\begin{cases} 10x_1 - x_2 = 9\\ x_1 - 10x_2 + 2x_3 = -7\\ -2x_2 + 10x_3 = 8 \end{cases}$

a) Use Gaussian elimination to find the exact solution of this system.

b) Approximate the solution of the above system using Gauss-Seidel iterative method, with tolerance 10^{-3} and initial approximation (0, 0, 0).

A list of formulas

The three-point formulas

$$f'(x_0) = \frac{1}{2h} \left[-3f(x_0) + 4f(x_0 + h) - f(x_0 + 2h) \right] + \frac{h^2}{3} f'''(\xi)$$
$$f'(x_0) = \frac{1}{2h} \left[f(x_0 + h) - f(x_0 - h) \right] - \frac{h^2}{6} f'''(\xi)$$

Simpson's rule

$$\int_{a}^{b} f(x)dx = \frac{h}{3}[f(a) + 4f(x_{0}) + f(b)] - \frac{h^{5}}{90}f^{(4)}(\xi)$$

Euler's method

$$w_{i+1} = w_i + hf(t_i, w_i)$$

Midpoint method

$$w_{i+1} = w_i + hf(t_i + \frac{h}{2}, w_i + \frac{h}{2}f(t_i, w_i))$$