

PRINCE SULTAN UNIVERSITY MATH 221 Final Examination Semester I, Term 081 Monday, February 9, 2009

Time Allowed: 120 minutes

Student Name:

Student ID #:

Teacher's Name:

Section #:

Important Instructions:

- **1.** You may use a scientific calculator that does not have programming or graphing capabilities.
- 2. You may NOT borrow a calculator from anyone.
- 3. You may NOT use notes or any textbook.
- 4. There should be NO talking during the examination.
- 5. Your exam will be taken immediately if your mobile phone is heard.
- 6. Looking around or making an attempt to cheat will result in your exam being cancelled. This examination has 6 problems, some with several parts. Make sure your paper has all these problems.

Problems	Max points	Student's Points
Q.1	10	
Q.2	9	
Q.3	8	
Q.4	8	
Q.5	9	
Q.6	6	
Total	50	

Question.1 (10 pts.)

Answer by writing True (T) of False (F) for each of the following statements:

1.	Bisection's method provides only one root in a certain interval.	()
2.	Newton's method has convergence of order 3.	()
3.	The need to know the value of the derivative of f in Newton's method is a major weakness.	()
4.	Secant's method starts with one initial approximations.	()
5.	If p^* is an approximation to p , the relative error is $ p-p^* $ and	
	the absolute error is $\frac{ p-p^* }{ p }$ provided that $p \neq 0$.	()
6.	Richardson's extrapolation is used to generate low-accuracy results while using low order formulas.	()
7.	Simpson's rule results from integrating over $[a,b]$ the second Lagrange	
	polynomial with nodes $x_0 = a$, $x_1 = a + h$ and $x_2 = b$ where $h = \frac{b-a}{2}$.	()
8.	The objective of Euler's method is said to obtain an approximation to the well-posed initial value problem $y'' = f(t, y), a \le t \le b, y(a) = c.$	()
9.	If a continuous function f is prescribed on an interval $[a,b]$ and if interpolating polynomials p_n of higher degree are constructed for f , the natural expectation is that these polynomials will converge to f uniformly on $[a,b]$.	()
10	. An algorithm for computing a divided difference table can be very efficient and is recommended as the best means for producing an interpolating polynomial.	()

Question.2 (9 pts.)

Consider the initial value problem (IVP) $\begin{cases} y' = te^{3t} - 2y, 0 \le t \le 1\\ y(0) = 0 \end{cases}$ with h = 0.5.

a) Use Taylor's method of order 2 to approximate the solutions of the (IVP).

b) Use Taylor's method of order 4 to approximate the solutions of the (IVP).

c) Construct a table to compare results obtained in part (a) and (b) and the exact solution of (IVP): $y(t) = \frac{1}{5}te^{3t} - \frac{1}{25}e^{3t} + \frac{1}{25}e^{-2t}$.

Question.3 (8 pts.) Evaluate the integrals

a) $\int_{1}^{3} x^2 \ln x dx$ using composite Trapezoidal rule with n = 4.

b) $\int_{1}^{3} x^2 \ln x dx$ using composite Simpson's rule with n = 4.

Question.4 (8 pts.) Solve the system $\begin{cases} 4x + 2y + z = 11 \\ -x + 2y = 3 \\ 2x + y + 4z = 16 \end{cases}$ with $X^{(0)} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^{T}$.

Obtain $X^{(1)}$ and $X^{(2)}$.

a) Using Jacobi method with initial vector

b) Using Gauss Seidel method with initial vector $X^{(0)} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$. Obtain $X^{(1)}$ and $X^{(2)}$.

<u>Question.5</u> (9 pts.)

a) Find a polynomial f(x) using Lagrange interpolation where f(0) = 1, f(1) = 2 and f(2) = 7.

b) Write the Newton interpolating polynomial for the data (Use divided difference algorithms):

x	4	2	0	3
f(x)	63	11	7	28

c) Use Newton's method to obtain an iteration formula for $\sqrt{17}$.

<u>Question.6</u> (6 pts.)

a) Derive a numerical differential formula of $o(h^4)$ by applying Richardson's extrapolation to

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} - \frac{h^2}{6}f'''(x) - \frac{h^4}{120}f^{(5)}(x).$$

b) For the polynomial $p(z) = 3z^5 - 7z^4 - 5z^3 + z^2 - 8z + 2$. Find a disk centered at the origin that contains all the zeros.

Formulas:

1.
$$\int_{a}^{b} f(x)dx = \frac{1}{2}h \left[f(a) + 2\sum_{i=1}^{n-1} f(a+ih) + f(b) \right].$$

2.
$$\int_{a}^{b} f(x)dx = \frac{1}{3}h \left[f(x_{0}) + 2\sum_{i=2}^{n/2} f(x_{2i-2}) + 4\sum_{i=1}^{n/2} f(x_{2i-1}) + f(x_{n}) \right].$$

3.
$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
.

4.
$$\rho = 1 + |a_n|^{-1} \cdot \max_{0 \le k \le n} |a_k|.$$