

Prince Sultan University Department of Mathematics and Physical Sciences

> Math 111 Final Examination

Semester II, Term 092 Tuesday, June 22, 2010 Time Allowed: 120 minutes

Student Name:

Student ID #:

Teacher's Name:

Important Instructions:

- 1. You may use a scientific calculator that does not have programming or graphing capabilities.
- 2. You may NOT borrow a calculator from anyone.
- 3. You may NOT use notes or any textbook.
- 4. There should be NO talking during the examination.
- 5. Your exam will be taken immediately if your mobile phone is seen or heard.
- 6. Looking around or making an attempt to cheat will result in your exam being cancelled.
- 7. This examination has 10 problems, some with several parts. Make sure your paper has all these problems.

Problems	Max points	Student's Points
1	20	
2,3	15	
4,5,6	16	
7,8,9	17	
10	12	
Total	80	

Q.1 (20 pts, 2 points each) Answer the following quick questions by **writing only the final result**:

	Questions	Answers
1.	For $f(x) = -4\sin(\frac{x}{3} + 2\pi)$. Find amplitude and period.	
2.	Let $f(x) = x^2 + 3$ and $g(x) = \sqrt{x}$. Evaluate $(f \circ g)(2) + (f + g)(1)$.	
3.	Evaluate $\lim_{x \to -\infty} (1 + 2x^3 - 5x^5)$	
4.	Find y''' for $y = x^{-5} + x^5$.	
5.	Find the relative extrema for $f(x) = 2x^3 - 24x$.	
6.	Given $f(x) = \begin{cases} x-2, & x < 0 \\ x^2, & 0 \le x \le 2. \end{cases}$ Find $\lim_{x \to 2^+} f(x)$. 2x, $x > 2$	
7.	Evaluate $\lim_{x \to 0} \frac{\sin 6x}{\sin 14x}$.	
8.	The average rate of change of $f(x) = x^2$ with respect to x over [1,3] is	
9.	Find $\frac{dy}{dx}$ for $y = \cos^{-1} x^2$.	
10.	Find the inflection points for $f(x) = x^4 - 3x^3$.	

Q.2 (9 points) Evaluate the limits 2^{2}

a)
$$\lim_{x \to -1} \frac{2x^2 + x - 1}{x + 1}$$
.

b)
$$\lim_{y \to 4} \frac{4 - y}{2 - \sqrt{y}}.$$

c)
$$\lim_{t\to\infty}\frac{6-t^3}{7t^3+3}.$$

Q.3 (6 points) Find the values of *a* and *b* that make $f(x) = \begin{cases} \frac{2 \sin x}{x}, & x < 0\\ a, & x = 0 \end{cases}$ continuous. $b \cos x, & x > 0 \end{cases}$

Q.4 (6 points) Find the derivatives of $\frac{1}{3}$

a)
$$y = e^{x^3} \sec^{-1} x$$
.

b)
$$y = \sqrt{3x^2 + 6x - 9} + \sec x \tan x$$
.

Q.5 (5 points) Find all values of x at which the tangent line to the curve $y = \frac{x^2 - 1}{x + 2}$ is horizontal.

Q.6 (5 points) Use the logarithmic differentiation to find $\frac{dy}{dx}$ for $y = (x^3 - 2x)^{\ln x}$.

Q.7 (6 points) Given f(1) = -2 and f'(1) = 3. Find the equation of the tangent line to $h(x) = (x^2 + 2x)f(x)$ at x = 1.

Q.8 (6 points) A garden is to be laid out in a rectangular area and protected by a chicken wire fence. What is the largest possible area of the garden if only 80 running feet of chicken wire is available for the fence?

Q.9 (5 points) Find $\frac{dy}{dx}$ by implicit differentiation of $\tan(xy^2 + y) = x$.

- Q.10 (12 points) Consider the rational function $f(x) = \frac{x^2 1}{x^3}$.
 - a) Check symmetry of f(x).
 - b) Find *x* and *y* intercepts.
 - c) Write equations of vertical and horizontal asymptotes.
 - d) Find the critical points, local maximum and minimum and interval of increase and decrease.

e) Find interval of concave up and concave down.

f) Sketch the graph.