

Prince Sultan University

Department of Mathematical Sciences Final Exam

Semester II, 2010 SPRING (092) Sunday - June 20, 2010

MATH 113 – CALCULUS II Mr. Khaled Naseralia

Time Allowed	: 150 minutes $\left(2\frac{1}{2} \text{ hours}\right)$				
Maximum Points: 100 points					
Name of the student:					
Student ID number:					
Section : 2	219				

For All The Students:

- Answer all the questions.
- This exam consists of <u>10 questions</u> and a total of 7 pages.
- Show your working for each question with all the key steps.
- Only scientific, non-programmable calculators are allowed.
- There should be no talking during the examination.

Questions	Maximum Score	Your Score
Q.1	37	
Q.2 , Q.3	16	
Q.4 , Q.5	14	
Q.6 , Q.7 , Q.8	17	
Q.9 , Q.10	16	
Total	100	

40

Q.1 (37 points): Evaluate the following integrals:

a)
$$\int \frac{2x+5}{x^2-3x+2} dx$$

b)
$$\int \frac{2}{x^2 \sqrt{4+x^2}} dx$$

c)
$$\int x \sin(3x) dx$$

$$\mathbf{d)} \quad \int \sqrt{\sin x} \, \cos^3 x \, dx$$

$$e) \quad \int \frac{3}{x^3 + 3x} dx$$

$$f) \quad \int \frac{x}{x^2 + 6x + 10} dx$$

Q.2 (10 points): Evaluate the integral and determine whether it converges or diverges.

(i)
$$\int_{-2}^{+\infty} e^{-x} dx$$

(ii)
$$\int_{2}^{+\infty} \frac{1}{(x-2)^2} dx$$

Q.3 (6 points): (i) Use Simpson's Rule to approximate the integral with n=4 subintervals.

(ii) Use your calculator to evaluate the exact value of $\int\limits_0^2 e^{-x^2} dx$

(iii) Calculate the absolute error.

Round your answers to 4 decimal places

Q.4 (6 points): (i) Use n=6 subintervals to approximate the integral $\int_{0}^{0.6} \frac{1}{\sqrt{4-x^2}} dx$ by the Trapezoid approximation.

- (ii) Use your calculator to evaluate the exact value of $\int_{0}^{0.6} \frac{1}{\sqrt{4-x^2}} dx$
- (iii) Calculate the absolute error.

Round your answers to 4 decimal places

Q.5 (8 points): Find the following limits:

(i)
$$\lim_{x \to \frac{\pi}{2}} (2x - \pi) \sec x$$

(ii)
$$\lim_{x\to 0} \frac{e^x + e^{-x} - 2}{1 - \cos 2x}$$

06	(5 points):	Find the area of	the region enclosed by the curves	y = -2x and	$y = x^2 - 3$
W.U	(<i>> poiiii3)</i> .	i ma me ai ea oi	The region enclosed by the curves	$y = - \angle x$ und	y-x

Q.7 (6 points): Find the volume of the solid generated when the region bounded by x+y-2=0, y=x and x=0 is revolved about the line x=-2.

Q.8 (6 points): Find the total distance traveled by a particle moving with a velocity $v(t) = t^2 - 2t$ during the time interval $0 \le t \le 4$

Q.9 (5 points): Compute the following sum without using a calculator.

$$\sum_{i=1}^{20} \left(\frac{i}{20}\right)^2$$

Q.10 (11 points): Solve the following Differential Equations:

(i)
$$\frac{\sqrt{1+2x^3}}{2+y}\frac{dy}{dx} = -5x^2$$
 ; $y(0) = -1$

(ii)
$$\frac{1}{2}y' + y = \sin(e^{2x})$$