

Prince Sultan University Department of Mathematical Sciences

Semester I, 2011 FALL (Term 111) January 18, 2012

MATH 111 – Calculus I Final Exam

Time Allowed : 120 minutes Maximum Points : 100 points

Name of the student: _____

ID number :_____

Section :-----

Important Instructions:

- 1. You may use a scientific calculator that does not have programming or graphing capabilities.
- 2. You may NOT borrow a calculator from anyone.
- 3. You may NOT use notes or any textbook.
- 4. There should be NO talking during the examination.
- 5. Your exam will be taken immediately if your mobile phone is seen or heard
- 6. Looking around or making an attempt to cheat will result in your exam being cancelled
- 7. This examination has 9 problems, some with several parts and a total of 6 pages. Make sure your paper has all these problems.

Question	Maximum score	Your Score
Q.1	20	_
Q.2 , Q.3 , Q.4	19	
Q.5	25	
Q.6, Q7, Q.8	18	
Q.9	18	
Total	100	

Q.1 (20 points): Find the derivative, $\frac{dy}{dx}$. (Simplify as much as possible)

(i) $y = x^{\cos 4x}$

(ii)
$$y = x^2 + \frac{x}{\sqrt{3x - x^2}}$$

(iii)
$$x^3y - 3y\sin x = xe^{3y}$$

(iv) $y = x^3 \cos(\ln x^2)$

(v)
$$y = \sin\left(\tan\sqrt{1+x^2}\right)$$

Q.2 (8 points): Show that $f(x) = \begin{cases} x^2 + 2 & \text{if } x \le 1 \\ x + 2 & \text{if } x > 1 \end{cases}$ is continuous but not differentiable at x = 1.

<u>Q.3 (5 points)</u>: Use the <u>Second Derivative Test</u> to determine all local extrema, if any for $f(x) = 1 + 10x^2 - 5x^3$

Q.4 (6 points): Given that
$$f(x) = \frac{5}{(x^2 + 4)^5}$$
. Find $\lim_{h \to 0} \frac{f(1+h) - f(1)}{h}$.

Q.5 (25 points): Evaluate the limits:

(i)
$$\lim_{x \to -1} \frac{x^2 + 6x + 5}{x^2 - 3x - 4}$$

(ii)
$$\lim_{x \to -\infty} \frac{\sqrt{3x^2 - 2}}{x + 5}$$

(iii)
$$\lim_{x \to 1} \frac{x-1}{\sqrt{10-x}-3}$$

(iv)
$$\lim_{x \to 0} \frac{x^2 - \tan^{-1} x}{x \cos x}$$

(v)
$$\lim_{x \to 0} \frac{\tan 2x}{x \cos x}$$

without using L'Hopital's Rule

<u>Q.6 (6 points)</u>: For the function $f(x) = x + \ln x$, check the hypotheses of Mean Value Theorem on the interval [1, e] and find a value of c that makes the appropriate conclusion true.

<u>Q.7 (6 points)</u>: Find the point on the curve $y = \sqrt{x+1}$ closest to the point (1,1).

Q.8 (6 points): Two ships started sailing from the same location at noon. Ship *A* travels north at 70km/h, while ship *B* travels east at 30km/h. After three hours, what is the rate of change of the distance between the two ships?

<u>Q.9 (18 points)</u>: Consider the function $f(x) = \frac{3x^2}{x^2 + 1}$.

- (a) Find the domain and intercepts of f.
- (b) Find the horizontal and vertical asymptotes of f if they exist.
- (c) Find critical number(s) for f and the intervals where f is increasing or decreasing.
- (d) Find the local extrema of f, if any.
- (e) Find the inflection point(s) of f and the intervals where f is concave up or down.
- (f) Sketch the graph of f showing all significant features.