



## **Prince Sultan University**

### CHEMISTRY 101 FIRST EXAM (162)

| Name:      | Date: March 29 <sup>th</sup> /2017 |
|------------|------------------------------------|
| Student no | Section:                           |

#### **Useful Information:**

General gas constant R=0.0821 atm.L/mol.K;  $N_{avogadro}$ =6.02×10<sup>23</sup>mol<sup>-1</sup> 1atm=760 torr=760 mmHg =101325 Pa

| <b>H</b> <sup>1</sup> |                         |                    |                    |                    |                  |                    |                    |                    |                         |                    |                             |                    |                    |                    |                         |                    | <b>He</b> <sup>2</sup>  |
|-----------------------|-------------------------|--------------------|--------------------|--------------------|------------------|--------------------|--------------------|--------------------|-------------------------|--------------------|-----------------------------|--------------------|--------------------|--------------------|-------------------------|--------------------|-------------------------|
| $Li^3$                | $\mathbf{Be}^4$         |                    |                    |                    |                  |                    |                    |                    |                         |                    |                             | $\mathbf{B}^5$     | $\mathbb{C}^6$     | $\mathbf{N}^7$     | $\mathbf{O}_8$          | $\mathbf{F}^9$     | $Ne^{10}$               |
| 6.941                 | 9.012                   |                    |                    |                    |                  |                    |                    |                    |                         |                    |                             | 10.81              | 12.01              | 14.01              | 16                      | 19                 | 20.18                   |
| $Na^{11}$             | $\mathbf{Mg}^{12}$      |                    |                    |                    |                  |                    |                    |                    |                         |                    |                             | $\mathbf{Al}^{13}$ | Si <sup>14</sup>   | $\mathbf{P}^{15}$  | $\mathbf{S}^{16}$       | $\mathbf{Cl}^{17}$ | $\mathbf{Ar}^{18}$      |
| 22.99                 | 24.31                   |                    |                    |                    |                  |                    |                    |                    |                         |                    |                             |                    | 28.09              |                    |                         | 35.45              | 39.95                   |
| $\mathbf{K}^{19}$     | $\mathbf{Ca}^{20}$      | $\mathbf{Sc}^{21}$ | $Ti^{22}$          | $\mathbf{V}^{23}$  | Cr <sup>24</sup> | $\mathbf{Mn}^{25}$ | Fe <sup>26</sup>   | $\mathbf{Co}^{27}$ | $Ni^{28}$               | Cu <sup>29</sup>   | $\mathbf{Z}\mathbf{n}^{30}$ | $Ga^{31}$          | $Ge^{32}$          | $\mathbf{As}^{33}$ | Se <sup>34</sup>        | Br <sup>35</sup>   | $\mathbf{Kr}^{36}$      |
|                       | 40.08                   | 44.96              |                    | 50.94              | 51.99            | 54.94              |                    |                    |                         |                    |                             |                    | 72.59              |                    |                         |                    | 83.8                    |
| $\mathbf{Rb}^{37}$    | $\mathbf{Sr}^{38}$      | $\mathbf{Y}^{39}$  | $\mathbf{Zr}^{40}$ | $Nb^{41}$          | Mo <sup>42</sup> | $\mathbf{Tc}^{43}$ | Ru <sup>44</sup>   | Rh <sup>45</sup>   | $\mathbf{Pd}^{46}$      | $\mathbf{Ag}^{47}$ | $\mathbf{Cd}^{48}$          | In <sup>49</sup>   | Sn <sup>50</sup>   | $\mathbf{Sb}^{51}$ | <b>Te</b> <sup>52</sup> | $\mathbf{I}^{53}$  | $\mathbf{Xe}^{54}$      |
|                       |                         |                    | 91.22              |                    |                  | 99.91              | 101.1              | 102.91             |                         |                    | 112.4                       | 114.8              | 118.69             |                    |                         | 126.9              | 131.3                   |
| $Cs^{55}$             | <b>Ba</b> <sup>56</sup> | Lu <sup>71</sup>   | $\mathbf{Hf}^{72}$ | $\mathbf{Ta}^{73}$ | ${ m W}^{74}$    | Re <sup>75</sup>   | $\mathbf{Os}^{76}$ | $\mathbf{Ir}^{77}$ | <b>Pt</b> <sup>78</sup> | $\mathbf{Au}^{79}$ | $\mathbf{Hg}^{80}$          | $\mathbf{Tl}^{81}$ | $\mathbf{Pb}^{82}$ | Bi <sup>83</sup>   | <b>Po</b> <sup>84</sup> | $At^{85}$          | <b>Rn</b> <sup>86</sup> |
| 132.9                 | 137 3                   | 175.0              | 178.5              | 180.9              | 183.85           | 186.2              | 190.2              | 192.2              | 195.1                   |                    |                             | 204.37             | 207.2              | 208.98             | 210                     | 210                | 222                     |

#### **Important instructions:**

- 1. Examination time: 60 Minutes.
- 2. Put any books/notebooks/sheets away and turn off your cell phone.
- 3. Write your name before starting with the questions.
- 4. The exam contains 6 pages in total, including the cover page and the scratch papers.
- 5. You may not borrow a calculator.
- 6. Any cheating signs may cause you to be expelled from the exam.

# Write the best fit answer of the following questions in this table:

| 1)         | of significant                                                        | figures (Assume to                                | hat all numbers ar   | e measured values)                      |                                                              |
|------------|-----------------------------------------------------------------------|---------------------------------------------------|----------------------|-----------------------------------------|--------------------------------------------------------------|
|            | (6.167 +                                                              | 68) ÷ 0.0510 =                                    | =                    | • • • • • • • • • • • • • • • • • • • • |                                                              |
| 2)         | _                                                                     | c acid is 0.895 g /<br>ecule? 5 cm 6 cm 5 cm 7 cm |                      |                                         | area of 20.0 cm <sup>2</sup> . The nolayer (the length of an |
| 3)         | (0.75 point) W                                                        | Which of the follow                               | wing statements is.  | false?                                  |                                                              |
|            | <ul><li>B) The terms</li><li>C) Elements</li><li>D) Compoun</li></ul> | can exist as atoms<br>ds can exist as ato         | nent" can have dif   | J                                       |                                                              |
| 4)         | (0.75 point)                                                          | A student is usin                                 | g a poorly calibra   | ted electronic bala                     | nce of a bad quality to                                      |
|            | measure the n                                                         | nass of a beaker.                                 | His technique in m   | naking the measure                      | ment is very careful and                                     |
|            | he repeats it th                                                      | ree times. What v                                 | will likely characte | rize his measureme                      | ents?                                                        |
|            | A) low accura                                                         | cy and high preci                                 | sion                 |                                         |                                                              |
|            | B) high accura                                                        | acy and low precis                                | sion                 |                                         |                                                              |
|            | C) high accura                                                        | acy and high prec                                 | ision                |                                         |                                                              |
|            | D) low accura                                                         | cy and low precis                                 | ion                  |                                         |                                                              |
|            | E) the data are                                                       | e not enough to pr                                | redict the result.   |                                         |                                                              |
| 5)         |                                                                       |                                                   |                      |                                         | rm an ionic compound<br>the most likely identity             |
|            | A) Mg                                                                 | B) Li                                             | C) H                 | D) O                                    | E) Cl                                                        |
| <b>6</b> ) | · -                                                                   | ame the following                                 | -                    |                                         |                                                              |
|            | B) MgS <sub>2</sub>                                                   |                                                   |                      |                                         |                                                              |
|            | C) SiF <sub>4</sub>                                                   |                                                   |                      |                                         |                                                              |

| 7)         | (1.0         | O point) Which of the following pairs is <b>INCORRECT</b> ?                                                                            |
|------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------|
|            | <b>A</b> )   | Monoiodine trichloride, ICl <sub>3</sub>                                                                                               |
|            | ,            | Mercury(I) iodide, HgI.                                                                                                                |
|            |              |                                                                                                                                        |
|            | ,            | Ammonia, NH <sub>3</sub>                                                                                                               |
|            | D)           | Sulfur hexafluoride, SF <sub>6</sub>                                                                                                   |
|            | E)           | A and B.                                                                                                                               |
| <b>6</b> / | (O '         | 75 <i>point</i> ) Which statement is <b>INCORRECT</b> ?                                                                                |
| 0)         |              | An atom of <sup>60</sup> Zn has an equal number of protons and neutrons                                                                |
|            | R)           | An atom of <sup>50</sup> Mn has an equal number of electrons and neutrons                                                              |
|            | C            | An atom of <sup>18</sup> O has an equal number of protons and neutrons                                                                 |
|            | D)           | An atom of <sup>41</sup> K has an equal number of protons and electrons                                                                |
|            | E)           | An atom of <sup>197</sup> Au contains 118 neutrons.                                                                                    |
|            | ,            |                                                                                                                                        |
| 9)         | (2.0         | <i>O points</i> ) An aqueous solution of ammonium chloride, NH <sub>4</sub> Cl was prepared by dissolving                              |
|            | 50           | g of the salt in enough water to make 300 mL solution.                                                                                 |
|            | A)           | (0.5 point) Calculate the molarity of this solution:                                                                                   |
|            |              |                                                                                                                                        |
|            |              |                                                                                                                                        |
|            | D)           | /0 7                                                                                                                                   |
|            | B)           | (0.75 point) What volume of water is needed to dilute this solution into 1 M?                                                          |
|            |              |                                                                                                                                        |
|            |              |                                                                                                                                        |
|            |              |                                                                                                                                        |
|            | $\mathbf{C}$ | (0.75 point) If 200 ml of 0.8 M NH <sub>4</sub> Cl solution were added to the 300 mL of the original                                   |
|            | C)           | NH <sub>4</sub> Cl solution prepared in this question. What will be the new concentration of this new solution?                        |
|            |              |                                                                                                                                        |
|            |              |                                                                                                                                        |
|            |              |                                                                                                                                        |
|            |              |                                                                                                                                        |
|            |              |                                                                                                                                        |
| 10         | /1 4         |                                                                                                                                        |
| 10         |              | <i>O point</i> ) A mixture of KCl and KNO <sub>3</sub> is 44.20% potassium by mass. The percentage of Cl in the mixture is closest to: |
|            | KC           | If the mixture is closest to:                                                                                                          |
|            | • • • •      |                                                                                                                                        |
|            | ••••         |                                                                                                                                        |
|            | • • • •      |                                                                                                                                        |
|            | ••••         |                                                                                                                                        |
|            | ••••         |                                                                                                                                        |
|            |              |                                                                                                                                        |
|            |              |                                                                                                                                        |
|            |              |                                                                                                                                        |

### CHM101 FIRST EXAM TERM-162

| B) (0.75                                     | point) Calculate the number of moles of this sample?  5 point) How many oxygen atoms exist in the sample?  pint) What is the mass of three compounds (or molecules) of this sample?                                                                            |
|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B) (0.75                                     | 5 point) How many oxygen atoms exist in the sample?  Dint) What is the mass of three compounds (or molecules) of this sample?                                                                                                                                  |
| B) (0.75                                     | 5 point) How many oxygen atoms exist in the sample?  Dint) What is the mass of three compounds (or molecules) of this sample?                                                                                                                                  |
| B) (0.75                                     | 5 point) How many oxygen atoms exist in the sample?  int) What is the mass of three compounds (or molecules) of this sample?                                                                                                                                   |
| B) (0.75                                     | 5 point) How many oxygen atoms exist in the sample?  Dint) What is the mass of three compounds (or molecules) of this sample?                                                                                                                                  |
| B) (0.75                                     | <i>pint</i> ) How many oxygen atoms exist in the sample?  Spoint How many oxygen atoms exist in the sample?                                                                                                                                                    |
| <br><br>                                     | pint) What is the mass of three compounds (or molecules) of this sample?                                                                                                                                                                                       |
| <br><br>                                     | oint) What is the mass of three compounds (or molecules) of this sample?                                                                                                                                                                                       |
| <br><br><br>C) (1 po                         | oint) What is the mass of three compounds (or molecules) of this sample?                                                                                                                                                                                       |
| <br><br>C) (1 po                             | oint) What is the mass of three compounds (or molecules) of this sample?                                                                                                                                                                                       |
| <br><br>C) (1 po<br>                         | <i>pint</i> ) What is the mass of three compounds (or molecules) of this sample?                                                                                                                                                                               |
| <br>C) (1 po<br>                             | pint) What is the mass of three compounds (or molecules) of this sample?                                                                                                                                                                                       |
| <br>C) (1 po<br>                             | pint) What is the mass of three compounds (or molecules) of this sample?                                                                                                                                                                                       |
| C) (1 po<br>                                 | <i>pint</i> ) What is the mass of three compounds (or molecules) of this sample?                                                                                                                                                                               |
|                                              |                                                                                                                                                                                                                                                                |
|                                              |                                                                                                                                                                                                                                                                |
|                                              |                                                                                                                                                                                                                                                                |
|                                              |                                                                                                                                                                                                                                                                |
|                                              |                                                                                                                                                                                                                                                                |
|                                              |                                                                                                                                                                                                                                                                |
|                                              |                                                                                                                                                                                                                                                                |
| Mg <sub>3</sub> (PO)<br>and 80.8<br>A) (1 po | nts) Suppose the following Unbalanced equation:<br>$(4)_2 + H_2SO_4 \rightarrow MgSO_4 + H_3PO_4$ is carried out starting with 103 g of Mg <sub>3</sub> (PO <sub>4</sub> )<br>as g of H <sub>2</sub> SO <sub>4</sub> .<br>pint) Balance the chemical equation: |
| B) (1 po                                     | pint) Determine the limiting reactant by calculations:                                                                                                                                                                                                         |
| •••••                                        |                                                                                                                                                                                                                                                                |
| •••••                                        |                                                                                                                                                                                                                                                                |
| •••••                                        |                                                                                                                                                                                                                                                                |
| • • • • • •                                  |                                                                                                                                                                                                                                                                |
| •••••                                        |                                                                                                                                                                                                                                                                |
|                                              | <i>point</i> ) If the percentage yield of this reaction is 70%, what mass of H <sub>3</sub> PO <sub>4</sub> will exted experimentally?                                                                                                                         |

4

### CHM101 FIRST EXAM TERM-162

# Scratch Paper