Prince Sultan University ### CHEMISTRY 101 FIRST EXAM (162) | Name: | Date: March 29 th /2017 | |------------|------------------------------------| | Student no | Section: | #### **Useful Information:** General gas constant R=0.0821 atm.L/mol.K; $N_{avogadro}$ =6.02×10²³mol⁻¹ 1atm=760 torr=760 mmHg =101325 Pa | H ¹ | | | | | | | | | | | | | | | | | He ² | |-----------------------|-------------------------|--------------------|--------------------|--------------------|------------------|--------------------|--------------------|--------------------|-------------------------|--------------------|-----------------------------|--------------------|--------------------|--------------------|-------------------------|--------------------|-------------------------| | Li^3 | \mathbf{Be}^4 | | | | | | | | | | | \mathbf{B}^5 | \mathbb{C}^6 | \mathbf{N}^7 | \mathbf{O}_8 | \mathbf{F}^9 | Ne^{10} | | 6.941 | 9.012 | | | | | | | | | | | 10.81 | 12.01 | 14.01 | 16 | 19 | 20.18 | | Na^{11} | \mathbf{Mg}^{12} | | | | | | | | | | | \mathbf{Al}^{13} | Si ¹⁴ | \mathbf{P}^{15} | \mathbf{S}^{16} | \mathbf{Cl}^{17} | \mathbf{Ar}^{18} | | 22.99 | 24.31 | | | | | | | | | | | | 28.09 | | | 35.45 | 39.95 | | \mathbf{K}^{19} | \mathbf{Ca}^{20} | \mathbf{Sc}^{21} | Ti^{22} | \mathbf{V}^{23} | Cr ²⁴ | \mathbf{Mn}^{25} | Fe ²⁶ | \mathbf{Co}^{27} | Ni^{28} | Cu ²⁹ | $\mathbf{Z}\mathbf{n}^{30}$ | Ga^{31} | Ge^{32} | \mathbf{As}^{33} | Se ³⁴ | Br ³⁵ | \mathbf{Kr}^{36} | | | 40.08 | 44.96 | | 50.94 | 51.99 | 54.94 | | | | | | | 72.59 | | | | 83.8 | | \mathbf{Rb}^{37} | \mathbf{Sr}^{38} | \mathbf{Y}^{39} | \mathbf{Zr}^{40} | Nb^{41} | Mo ⁴² | \mathbf{Tc}^{43} | Ru ⁴⁴ | Rh ⁴⁵ | \mathbf{Pd}^{46} | \mathbf{Ag}^{47} | \mathbf{Cd}^{48} | In ⁴⁹ | Sn ⁵⁰ | \mathbf{Sb}^{51} | Te ⁵² | \mathbf{I}^{53} | \mathbf{Xe}^{54} | | | | | 91.22 | | | 99.91 | 101.1 | 102.91 | | | 112.4 | 114.8 | 118.69 | | | 126.9 | 131.3 | | Cs^{55} | Ba ⁵⁶ | Lu ⁷¹ | \mathbf{Hf}^{72} | \mathbf{Ta}^{73} | ${ m W}^{74}$ | Re ⁷⁵ | \mathbf{Os}^{76} | \mathbf{Ir}^{77} | Pt ⁷⁸ | \mathbf{Au}^{79} | \mathbf{Hg}^{80} | \mathbf{Tl}^{81} | \mathbf{Pb}^{82} | Bi ⁸³ | Po ⁸⁴ | At^{85} | Rn ⁸⁶ | | 132.9 | 137 3 | 175.0 | 178.5 | 180.9 | 183.85 | 186.2 | 190.2 | 192.2 | 195.1 | | | 204.37 | 207.2 | 208.98 | 210 | 210 | 222 | #### **Important instructions:** - 1. Examination time: 60 Minutes. - 2. Put any books/notebooks/sheets away and turn off your cell phone. - 3. Write your name before starting with the questions. - 4. The exam contains 6 pages in total, including the cover page and the scratch papers. - 5. You may not borrow a calculator. - 6. Any cheating signs may cause you to be expelled from the exam. # Write the best fit answer of the following questions in this table: | 1) | of significant | figures (Assume to | hat all numbers ar | e measured values) | | |------------|---|---|----------------------|---|--| | | (6.167 + | 68) ÷ 0.0510 = | = | • | | | 2) | _ | c acid is 0.895 g /
ecule? 5 cm 6 cm 5 cm 7 cm | | | area of 20.0 cm ² . The nolayer (the length of an | | 3) | (0.75 point) W | Which of the follow | wing statements is. | false? | | | | B) The termsC) ElementsD) Compoun | can exist as atoms
ds can exist as ato | nent" can have dif | J | | | 4) | (0.75 point) | A student is usin | g a poorly calibra | ted electronic bala | nce of a bad quality to | | | measure the n | nass of a beaker. | His technique in m | naking the measure | ment is very careful and | | | he repeats it th | ree times. What v | will likely characte | rize his measureme | ents? | | | A) low accura | cy and high preci | sion | | | | | B) high accura | acy and low precis | sion | | | | | C) high accura | acy and high prec | ision | | | | | D) low accura | cy and low precis | ion | | | | | E) the data are | e not enough to pr | redict the result. | | | | 5) | | | | | rm an ionic compound
the most likely identity | | | A) Mg | B) Li | C) H | D) O | E) Cl | | 6) | · - | ame the following | - | | | | | B) MgS ₂ | | | | | | | C) SiF ₄ | | | | | | 7) | (1.0 | O point) Which of the following pairs is INCORRECT ? | |------------|--------------|--| | | A) | Monoiodine trichloride, ICl ₃ | | | , | Mercury(I) iodide, HgI. | | | | | | | , | Ammonia, NH ₃ | | | D) | Sulfur hexafluoride, SF ₆ | | | E) | A and B. | | 6 / | (O ' | 75 <i>point</i>) Which statement is INCORRECT ? | | 0) | | An atom of ⁶⁰ Zn has an equal number of protons and neutrons | | | R) | An atom of ⁵⁰ Mn has an equal number of electrons and neutrons | | | C | An atom of ¹⁸ O has an equal number of protons and neutrons | | | D) | An atom of ⁴¹ K has an equal number of protons and electrons | | | E) | An atom of ¹⁹⁷ Au contains 118 neutrons. | | | , | | | 9) | (2.0 | <i>O points</i>) An aqueous solution of ammonium chloride, NH ₄ Cl was prepared by dissolving | | | 50 | g of the salt in enough water to make 300 mL solution. | | | A) | (0.5 point) Calculate the molarity of this solution: | | | | | | | | | | | D) | /0 7 | | | B) | (0.75 point) What volume of water is needed to dilute this solution into 1 M? | | | | | | | | | | | | | | | \mathbf{C} | (0.75 point) If 200 ml of 0.8 M NH ₄ Cl solution were added to the 300 mL of the original | | | C) | NH ₄ Cl solution prepared in this question. What will be the new concentration of this new solution? | 10 | /1 4 | | | 10 | | <i>O point</i>) A mixture of KCl and KNO ₃ is 44.20% potassium by mass. The percentage of Cl in the mixture is closest to: | | | KC | If the mixture is closest to: | | | • • • • | | | | •••• | | | | • • • • | | | | •••• | | | | •••• | | | | | | | | | | | | | | ### CHM101 FIRST EXAM TERM-162 | B) (0.75 | point) Calculate the number of moles of this sample? 5 point) How many oxygen atoms exist in the sample? pint) What is the mass of three compounds (or molecules) of this sample? | |--|--| | B) (0.75 | 5 point) How many oxygen atoms exist in the sample? Dint) What is the mass of three compounds (or molecules) of this sample? | | B) (0.75 | 5 point) How many oxygen atoms exist in the sample? Dint) What is the mass of three compounds (or molecules) of this sample? | | B) (0.75 | 5 point) How many oxygen atoms exist in the sample? int) What is the mass of three compounds (or molecules) of this sample? | | B) (0.75 | 5 point) How many oxygen atoms exist in the sample? Dint) What is the mass of three compounds (or molecules) of this sample? | | B) (0.75 | <i>pint</i>) How many oxygen atoms exist in the sample? Spoint How many oxygen atoms exist in the sample? | |

 | pint) What is the mass of three compounds (or molecules) of this sample? | |

 | oint) What is the mass of three compounds (or molecules) of this sample? | |

C) (1 po | oint) What is the mass of three compounds (or molecules) of this sample? | |

C) (1 po | oint) What is the mass of three compounds (or molecules) of this sample? | |

C) (1 po
 | <i>pint</i>) What is the mass of three compounds (or molecules) of this sample? | |
C) (1 po
 | pint) What is the mass of three compounds (or molecules) of this sample? | |
C) (1 po
 | pint) What is the mass of three compounds (or molecules) of this sample? | | C) (1 po
 | <i>pint</i>) What is the mass of three compounds (or molecules) of this sample? | Mg ₃ (PO)
and 80.8
A) (1 po | nts) Suppose the following Unbalanced equation:
$(4)_2 + H_2SO_4 \rightarrow MgSO_4 + H_3PO_4$ is carried out starting with 103 g of Mg ₃ (PO ₄)
as g of H ₂ SO ₄ .
pint) Balance the chemical equation: | | B) (1 po | pint) Determine the limiting reactant by calculations: | | ••••• | | | ••••• | | | ••••• | | | • • • • • • | | | ••••• | | | | <i>point</i>) If the percentage yield of this reaction is 70%, what mass of H ₃ PO ₄ will exted experimentally? | 4 ### CHM101 FIRST EXAM TERM-162 # Scratch Paper