•), 7	CHM101 FINAL		TERM-162
6	Prince Sultan Universi	ity	
PRINCE SULTAN UNIVERSITY	CHEMISTRY 101 FINAL EXAM (162)		
Name:		Date: May.20 th /2017	
Student no.		Section:	

Useful Information:

General gas constant R=0.0821 atm.L/mol.K; 1atm=760 torr=760 mmHg =101325 Pa $N_{avogadro} = 6.02 \times 10^{23} mol^{-1}$

	-																
\mathbf{H}^{1}																	He ²
1.000																	4
Li ³	\mathbf{Be}^4											\mathbf{B}^5	\mathbf{C}^{6}	\mathbf{N}^7	\mathbf{O}^{8}	\mathbf{F}^9	Ne^{10}
6.941	9.012											10.81	12.01	14.01	16	19	20.18
\mathbf{Na}^{11}	Mg^{12}											\mathbf{Al}^{13}	Si ¹⁴	\mathbf{P}^{15}	\mathbf{S}^{16}	\mathbf{Cl}^{17}	\mathbf{Ar}^{18}
22.99	24.31											26.98	28.09	30.97	32.06	35.45	39.95
\mathbf{K}^{19}	\mathbf{Ca}^{20}	\mathbf{Sc}^{21}	Ti ²²	\mathbf{V}^{23}	Cr ²⁴	Mn ²⁵	Fe ²⁶	Co ²⁷	Ni ²⁸	Cu^{29}	\mathbf{Zn}^{30}	\mathbf{Ga}^{31}	\mathbf{Ge}^{32}	As^{33}	Se ³⁴	Br ³⁵	\mathbf{Kr}^{36}
39.10	40.08	44.96	47.9	50.94	51.99	54.94	55.85	58.93	58.71	63.54	65.37	69.72	72.59	74.92	78.96	79.9	83.8
Rb ³⁷	Sr ³⁸	\mathbf{Y}^{39}	\mathbf{Zr}^{40}	\mathbf{Nb}^{41}	Mo ⁴²	\mathbf{Tc}^{43}	\mathbf{Ru}^{44}	Rh ⁴⁵	Pd ⁴⁶	Ag^{47}	\mathbf{Cd}^{48}	In ⁴⁹	Sn ⁵⁰	Sb ⁵¹	Te ⁵²	\mathbf{I}^{53}	$\mathbf{X}\mathbf{e}^{54}$
85.47	87.62	88.91	91.22	92.91	95.94	99.91	101.1	102.91	106.4	107.87	112.4	114.8	118.69	121.75	127.6	126.9	131.3
Cs^{55}	Ba ⁵⁶	Lu^{71}	\mathbf{Hf}^{72}	Ta^{73}	W^{74}	\mathbf{Re}^{75}	Os^{76}	Ir ⁷⁷	Pt ⁷⁸	Au ⁷⁹	Hg^{80}	\mathbf{Tl}^{81}	Pb ⁸²	Bi ⁸³	Po ⁸⁴	At^{85}	Rn ⁸⁶
132.9	137.3	175.0	178.5	180.9	183.85	186.2	190.2	192.2	195.1	196.97	200.6	204.37	207.2	208.98	210	210	222

Student's mark
/40

Important instructions:

1. Examination time: 180 Minutes.

- 2. Put any books/notebooks/sheets away and turn off your cell phone.
- 3. Write your name before starting with the questions.
- 4. The exam contains 11 pages in total, including the cover page and the scratch papers.
- 5. You may not borrow a calculator.
- 6. Any cheating signs may cause you to be expelled from the exam.

Write the best fit answer of the following questions in this table:

- 1) (1.0 point) What is the best answer to report for $\frac{3.478 \text{ g} \times 1.164 \text{ g}}{2.00 \text{ mL}} = 0.169 \text{ g/mL}$?
 - A) 1.8510 g/mL
 - B) 1.851 g/mL
 - C) 1.85 g/mL
 - D) 1.9 g/mL
 - E) 2 g/mL
- 2) (0.75 *point*) Which of the following best represents *a homogeneous* mixture of an element and a compound?

- 3) (1.0 point) Which of the following statements is true?
 - A) ${}^{18}_{8}$ \odot and ${}^{19}_{9}$ F have the same number of neutrons.
 - B) ${}^{14}_{6}$ C and ${}^{14}_{7}$ N are isotopes of each other because their mass numbers are the same.
 - C) ${}^{18}_{8} \odot^{2-}$ has the same number of electrons as ${}^{20}_{10}$ Ne.
 - D) A and B
 - E) A and C
- 4) (*1 point*) A hydrocarbon (a compound consisting solely of carbon and hydrogen) is found to be 85.6% carbon by mass. What is the *empirical formula* for this compound?
 - A) CH
 - B) CH₂
 - C) C₂H
 - D) C₃H
 - E) CH₄

- 5) (0.75 point) The limiting reactant in a reaction
 - A) is the reactant for which there is the least amount in grams
 - B) is the reactant which has the lowest coefficient in a balanced equation
 - C) is the reactant for which there is the most amount in grams
 - D) is the reactant for which there is the fewest number of moles
 - E) none of the above
- 6) (*2 points*) Fill in the blank?
 - A) The formula of copper (II) oxide is______
 - B) The formula of barium chloride dihydrate is_____
 - C) The *common* name of SiH₄ is_____
 - D) The name of Cl₂O₇ is_
- 7) (0.75 point) Which of the following are <u>incorrectly</u> paired?
 - A) Ba, alkaline earth metal
 - B) H, noble gas
 - C) Cl, halogen
 - D) Cu, transition metal
 - E) Si, metalloid
- 8) (1.0 point) How many atoms of oxygen are in 0.52 g of limestone, CaCO₃?
 - A) 3
 - B) 1.81 x 10²⁴
 - C) 3.55×10^{21}
 - D) 1.07×10^{22}
 - E) 1.18×10^{21}
- **9**) (*1 point*) Oxides of copper include CuO and Cu₂O. You heat 1.51 g of one of these copper oxides in the absence of air and obtain 1.21 g of Cu .True or false: You must have had CuO (SHOW YOUR ANSWER BY CALCULATIONS).

10) (2.25 *points*) Ammonia can be made by reaction of water with magnesium nitride as shown by the following **unbalanced equation:**

 $\dots CH_4(g) + \dots Cl_2(g) \rightarrow \dots CCl_4(g) + \dots HCl(g)$

Balance the equation then answer the following two questions:

I) The sum of all coefficients (*reactants* and *products*) in the balanced equation equals:

- A) 9
- B) 8
- C) 10
- D) 7
- E) none of these

II) What mass of CCl_4 will be formed if 1.20 moles of methane react with 1.11 moles of chlorine? A) 42.7 g

- B) 171 g
- C) 683 g
- D) 185 g
- E) 19.7 g

III) If the actual collected mass of chlorine is 10.0 grams, then the percentage yield of the reaction is? A) 23.4 %

- B) 50.76 %
- C) 4.27%
- D) 5.4 %
- E) None of these

11) (2.75 *points*) A 40.88-g sample of KOH is dissolved in enough water to make 1.55 liters of solution. Answer the following questions:

I) What is the molarity of this solution:

II) How many mL of this solution (KOH solution) must be diluted with water in order to make 1.000 L of $0.100 \text{ M Ba}(\text{OH})_2$?

III) How many mL of 0.2 M H_2SO_4 solution are required to neutralize the whole amount (1.55 L) of KOH solution ?

- **12**) *(1.0 point)* When sodium chloride, NaCl and lead(II) nitrate, Pb(NO₃)₂ react in an aqueous solution, which of the following terms will be present in the *balanced* molecular equation?
 - A) PbCl(s)
 - B) $Pb_2Cl(s)$
 - C) NaNO₃(aq)
 - D) 2NaNO₃(aq)
 - E) 2PbCl₂(s)

13) (*1.0 point*) For the reaction $4\text{FeCl}_2(aq) + 3\text{O}_2(g) \rightarrow 2\text{Fe}_2\text{O}_3(s) + 4\text{Cl}_2(g)$, what *volume* of a 0.760 M solution of FeCl₂ is required to react completely with 6.36×10^{21} molecules of O_2 ?

- A) $5.26 \times 10^3 \text{ mL}$
- B) 10.7mL
- C) 10.4mL
- D) 18.5mL
- E) 6.02 mL

14) (0.75 points) In the reaction $2Mg(s) + O_2(g) \rightarrow 2MgO(s)$, which species is <u>oxidized</u>?

- A) O_2
- $\dot{B} O^{\bar{2}}$
- C) Ca^{2+}
- D) Mg
- E) MgO

15) (*1.0 point*) Which of the following statements correctly describes the signs of q and w for the following *condensation* process at P = 1 atm and T = 370 K?

 $H_2O(g) \rightarrow H_2O(l)$

- A) q and w are negative.
- B) q is positive, w is negative.
- C) q is negative, w is positive.
- D) q and w are both positive.
- E) q and w are both zero.

16) (*1.0 points*) 30.0 mL of pure water at 282 K is mixed with 50.0 mL of pure water at 306 K. What is the *final temperature* of the mixture?

- A) 294K
- B) 297K
- C) 342K
- D) 588K
- E) 24 K

- 17) (1.0 points) Calculate the *work* associated with the compression of a gas from 121.0 L to 80.0 L at a constant pressure of 13.1 atm.
 - A) 537L atm
 - B) 537L atm
 - C) 3.13L atm
 - D) -3.13L atm
 - E) 101 L atm
- **18**) (*1 point*) The total volume of a sample of hydrogen gas was 2.11×10^8 L at 1.00 atm and 24.7°C. How much energy was evolved when it burned according to the following equation?

 $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(l), \Delta H = -286 \text{ kJ}$

- A) 8.64×10^6 kJ.
- B) $2.98 \times 10^{10} \text{ kJ}$
- C) $3.02 \times 10^4 \text{ kJ}$
- D) $2.47 \times 10^9 \text{ kJ}$
- E) $4.94 \times 10^9 \text{ kJ}$
- 19) (0.75 point) Gases generally have
 - A) low density
 - B) high density
 - C) closely packed particles
 - D) no increase in volume when temperature is increased
 - E) no decrease in volume when pressure is increased
- **20**) (*1.0 point*) You fill a balloon with 2.50 moles of gas at 22°C at a pressure of 1.62 atm. What is the volume of the balloon?
 - A) 37.4 L
 - B) 98.0L
 - C) 15.7 L
 - D) 2.79L
 - E) 22.4 L

21) (*1 point*) The temperature of a specific amount of gas in a sealed container changes from 20.0°C to 40.0°C. If the volume remains constant, the pressure will change from 755 mmHg to

- A) 1510 mmHg
- B) 707 mmHg
- C) 378 mmHg
- D) 807 mmHg
- E) 755 mmHg

22) (0.75 point) In *ideal gas* the attractive forces between particles:

- A) are not exist
- B) are very weak
- C) are very high
- D) can not be estimated
- E) depend on the type of the gas.

23) (*1.0 point*) What volume of water vapor, H₂O measured at STP is produced by the combustion of 6.27 g of natural gas, CH₄ according to the following equation:

 $\operatorname{CH}_4(g) + 2\operatorname{O}_2(g) \to \operatorname{CO}_2 + 2\operatorname{H}_2\operatorname{O}(g)$

- 24) (2.0 points) Regarding the atomic structure and quantum numbers answer the following questions:
 - A) The number of *f* orbitals that have the value n=4 is____
 - B) The maximum number of electrons that can be contained in all energy sub-levels when n=4 is____
 - C) The *l* quantum number for a 4*s* orbital is____
 - D) Write the electron configuration of Cu_____
- 25) (1 points) Which of the following statements about quantum theory is correct?
 - A) The position and the momentum of an electron in the atom can be determined exactly.
 - B) Lower energy orbitals are filled with electrons before higher energy orbitals.
 - C) When filling orbitals of equal energy, two electrons will occupy the same orbital before filling a new orbital.
 - D) No two electrons can have the same four quantum numbers.
 - E) B and D.

26) (*1 point*) Which of the following arrangements best represents the last energy level of \underline{N}^{-} ?

27) (0.75points) Which of the following is an incorrect designation for an atomic orbital?

- A) 1s
- B) 3d
- C) 1p
- D) 4f
- E) 6s

- 28) (0.75 point) Which of the following best describes an orbital?
 - A) space where electrons are unlikely to be found in an atom
 - B) space which may contain electrons, protons, and/or neutrons
 - C) the space in an atom where an electron is most likely to be found
 - D) small, walled spheres that contain electrons
 - E) a single space within an atom that contains all electrons of that atom

29) (1.0 poinst) What is the correct order of the following bonds in terms of decreasing polarity?

- A) C-F< O-F< N-F
- B) C-F<N-F<O-F
- C) O-F<N-F<C-F
- D) N-F< O-F< C-F
- E) N-F< C-F< O-F

30) (10 points) Answer the following questions with respect to the following species:

i) Xenon oxydifluoride, $XeOF_2$

ii) Nitrate , NO_3^-

iii) Nitrogen dioxide, NO₂

- iv) Formaldehyde, CH₂O
- A) (3 points) Draw all possible Lewis structures of **XeOF**₂ and **NO**₂ then indicate the most stable structure of each one:

XeOF₂

NO_2

•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	
•••••	•••••		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	
•••••	•••••		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	
•••••	•••••		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	
•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	
•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	
•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	
•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	
	•••••					

B) (1.0 points) Draw all resonance structures of nitrate, NO₃⁻

- C) (1 point) The number of sigma (σ) bonds in NO₂ is _____while the number of pi (π) bonds is _____
- D) (0.5 point) The number of lone pairs of electrons around the central atom of in CH₂O is_____
- E) (4.5 points) Fill the following table:

Molecule	Geometry name	3D-sketch	Bond angle(s)
CH ₂ O			
XeOF ₂			
NO ₃ ⁻			

Scratch Paper

<u>Scratch Paper</u>