

Prince Sultan University Orientation Mathematics Program Math223

Major 11 Fall Semester 091 Sunday, Dec. 13, 2009

Dr. Muhammad Islam Mustafa

Student Name: Time allowed:		owed: 60 minutes
=== <u>Q.1:</u>	Write $True(T)$ or $False(F)$ for each of the following statements.	(5 pts)
	1) The angle between the vectors $\mathbf{u} = (1,2)$ and $\mathbf{v} = (1,-1)$ is an acute angle.	
	2) The distance between the point (10, 0) and the line $3x + 4y = 0$ is 6.	
	3) The vectors $\mathbf{u} = (1,-1,3)$, $\mathbf{v} = (2,1,0)$, and $\mathbf{w} = (4,2,0)$ lie in the same plane.	
	4) The line $x=1-t$, $y=2t$, $z=2t$ and the plane $2x-4y+5z=0$ are perpendicular.	ular. ————
	5) If $\ \mathbf{u} + \mathbf{v}\ = 4$ and $\ \mathbf{u} - \mathbf{v}\ = 2$, then $\mathbf{u} \cdot \mathbf{v} = 3$.	
	6) If $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ and A is a symmetric $n \times n$ matrix, then $A\mathbf{u} \cdot \mathbf{v} = \mathbf{u} \cdot A\mathbf{v}$.	
	7) The transformation $T(x_1, x_2) = (x_1 + x_2, x_1 - x_2, 1)$ is linear.	
	8) The standard matrix of the composition of a reflection about the y-axis follow by an orthogonal projection on the x-axis is $\begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix}$.	ved
	9) If T is a linear transformation and $T(\mathbf{u}) = (1,2), T(\mathbf{v}) = (-1,1)$, then $T(2\mathbf{u} - \mathbf{v})$	= (3,3).
	10) If $\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3}$ are the standard basis of R^3 and T is a linear operator on R^3 such $T(\mathbf{e_1}) = \begin{bmatrix} 5 \\ 1 \\ -1 \end{bmatrix}, T(\mathbf{e_2}) = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}, T(\mathbf{e_3}) = \begin{bmatrix} 0 \\ 0 \\ 3 \end{bmatrix}$, then T is onto.	ch that
Q.2:	Given that $\mathbf{u} = 5\mathbf{i} - 12\mathbf{j}$, $\mathbf{v} = \overrightarrow{PQ}$ where P is (1,0), $\ \mathbf{v}\ = 26$ and \mathbf{v} is in the opposition	site (3 pts)

direction of \mathbf{u} . Find the terminal point Q of the vector \mathbf{v} .

Q.3: Prove that: If the vector \mathbf{u} is orthogonal to the vector \mathbf{v} , then $\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$. (2 pts)

Q.4: Let $\mathbf{u} = (1,-2,3)$ and $\mathbf{v} = (1,0,1)$. Find
(a) The vector component of \mathbf{u} along \mathbf{v} .

- (b) A vector that is perpendicular to the plane determined by \mathbf{u} and \mathbf{v} .
- (c) An equation of the plane that contains the line x = 2 + t, y = 1 2t, z = 3t and is perpendicular to the plane x + z = 5

Q.5: Consider the linear operator
$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
 defined by
$$\begin{cases} w_1 = x_1 + x_2 + x_3 \\ w_2 = 4x_1 + 5x_2 \\ w_3 = x_2 - 3x_3 \end{cases}$$
 (4 pts)

- (a) Find the standard matrix of T.
- (b) Show that T is one-to-one, and then find the formula of T^{-1} .