PRINCE SULTAN UNIVERSITY

MATH 223

MAJOR EXAM 3 13 JANUARY 2010

WAJOK EAAWI 5 15 JANUAK I 2010	
Start: 4:00 p.m. End: 5:30 p.m.	
Name:	
<u>I.D.</u>	
MATH 223 / Major Exam 3 (Ch. 5, 6, 7)	Dr. Muhammad Islam Mustafa
Student Name:	Time allowed: 90 minutes
Q.1: Write $True(T)$ or $False(F)$ for each of the following st	<u>statements.</u> (5 pts
1) The set R^2 , with the standard addition operation and the scalar multiplication $k(x, y) = (kx, y)$, is a vector space	\mathcal{E}
2) The set $W = \{ p \in P_2 \mid p(1) = 0 \}$ is a subspace of P_2 and	$\operatorname{and} \dim(W) = 2.$
3) The set $S = \{(1,0,2), (0,1,1), (-1,1,-1), (1,1,3)\}$ is a spann $\begin{bmatrix} 1 & 0 & -1 \end{bmatrix}$	ning set for R^3 .
4) If $A = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 2 & 0 & -2 \end{bmatrix}$, then $nullity(A) = 2$.	
5) If u and v are nonzero vectors in an inner product spac then u and v are linearly independent.	ce V and $\langle \mathbf{u}, \mathbf{v} \rangle = 0$,
6) Consider the vector space $C[-1,1]$, with the inner prod	fluct $\langle f, g \rangle = \int_{-1}^{1} f(x)g(x)dx$.
If $f(x) = x$ and $g(x) = x^2$, then f is orthogonal to g.	
7) Consider the inner product on R^2 generated by the ma	$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}.$
If $\mathbf{u} = (1,0)$ and $\mathbf{v} = (0,1)$, then $d(\mathbf{u}, \mathbf{v}) = \sqrt{2}$.	
8) If $A = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 2 & 0 \\ 1 & 0 & -1 \end{bmatrix}$, then $\lambda = \frac{1}{8}$ is an eigenvalue of A^{-1}	
9) If 2 is an eigenvalue of a matrix A, then 5 is an eigenva $\begin{bmatrix} 1 & -1 & 2 \end{bmatrix}$	alue of the matrix $(A+3I)$.
10) The matrix $A = \begin{bmatrix} 1 & -1 & 2 \\ -1 & 3 & 4 \\ 2 & 4 & 7 \end{bmatrix}$ is diagonalizable.	

Q.2: Consider the set
$$S = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$$
, where $\mathbf{u}_1 = (1,2,0), \mathbf{u}_2 = (0,3,2), \mathbf{u}_3 = (1,-1,-1).$ (5 pts)

(a) Show that S is a basis for R^3 .

(b) Find the coordinate vector of $\mathbf{v} = (-1,4,7)$ relative to the basis S.

Q.3: Consider the matrix
$$A = \begin{bmatrix} -1 & -1 & -1 \\ 0 & 1 & 2 \\ 0 & -1 & -2 \end{bmatrix}$$
. (6 pts)

- (a) Find the eigenvalues and bases for the corresponding eigenspaces of the matrix A.
- (b) Find the matrix P that diagonalize A and find P^{-1} .
- (c) Find A^{10} .

Q.4: Each of the following is not an inner product on R^2 . List the axioms that don't hold for each part. (4 pts)

- (a) $\langle \mathbf{u}, \mathbf{v} \rangle = u_1 v_1 + u_1 v_2 + u_2 v_1 + u_2 v_2$
- (b) $\langle \mathbf{u}, \mathbf{v} \rangle = u_1^2 v_1^2 + u_2^2 v_2^2$