

Prince Sultan University

Math 113 Major Exam 1 Second Semester, Term 142 Saturday, March 7, 2015

Time Allowed: 90 minutes

Student Name:		
Student ID #:		
Serial Class #:	Section #:	
Instructor's Name: Dr. Aiman Mukheimer, Dr. Bahaaeldin Abdalla, Dr. Saleem		

Important Instructions:

- 1. You may use a scientific calculator that does not have programming or graphing capabilities.
- 2. You may NOT borrow a calculator from anyone.
- 3. You may NOT use notes or any textbook.
- 4. Talking during the examination is NOT allowed.
- 5. Your exam will be taken immediately if your mobile phone is seen or heard.
- 6. Looking around or making an attempt to cheat will result in your exam being cancelled.
- 7. This examination has **10** problems, some with several parts. Make sure your paper has all these problems.

Problems	Max points	Student's Points
1,2,3	21	
4,5	18	
6,7	15	
8,9,10	26	
Total	80	

- 1. Let A be the area of the region that lies under the graph of $f(x) = e^{-x^2}$ between x = 1 and x = 3
 - (a) (5 points) Find an expression for the area A, using right endpoints (**Note: Do not evaluate the limit**).

(b) (4 points) Estimate the above area to four decimal places by taking the sample points to be midpoints using four subintervals (n = 4).

2. (6 points) Let $f(x) = \begin{cases} \frac{d}{dx} (\sin x^3) & 1 < x \le \pi \\ \frac{7}{1+x^2} & -1 \le x \le 1 \end{cases}$. Find $\int_{-1}^{\pi} f(x) dx$.

3. (6 points) The acceleration
$$g(x) = \int_{4}^{x^2} x \sin(t) dt$$

4. Evaluate the following integrals: (Show your work in details)

i. (6 points)
$$\int_{1/2}^{\sqrt{3}/2} \frac{5}{(\sin^{-1} x)\sqrt{1-x^2}} dx$$

ii. (3 points)
$$\int \frac{2t^5 + t^2 - 1}{\sqrt{t}} dt$$

iii. (5 points)
$$\int_{-1}^{4} |3x - 6| dx$$

5. (7 points) **Sketch** the region bounded by the curves below <u>and</u> **find** its area:

$$y = \cos x$$
, $y = -x + 2$, $x = 0$, and $x = \frac{\pi}{2}$.

6. (8 point) **Sketch** the region bounded by the curves below <u>and</u> **find** its area:

$$y = \frac{1}{4}x$$
, $y = 2x^2$, $x + y = 3$, $x \ge 0$.

- 7. (12 point) **Sketch** the region **and setup only** a formula for the volume of the solid that we obtain by rotating the region bounded by $y = 4x x^2$ and y = 0.
- (a) About the line x = -1.

(b) About the line y = 5.

8. (8 point) **Sketch** the region <u>and</u> find the volume of the solid that we obtain by rotating the region bounded by $y = e^{-x}$, y = 1, and x = 3; about y = -1. (**Do not use the calculator**)

9. (6 points) Find the average value of $f(x) = x^2 \sqrt{2+x}$ on the interval [-2,2].