

CHEMISTRY 101 SECOND EXAM (132)

Name:	Date: 1/5/2014
Student no.	Section:

<u>Useful Information:</u> Gas Constant R = 0.08206 L.atm/K.mol, Specific heat of $H_2O = 4.18$ J/g. °C Planck's Constant $= 6.63 \times 10^{-3}$ ⁴J.s.

H ¹																	He ²
Li^3	\mathbf{Be}^4											\mathbf{B}^5	\mathbf{C}^6	\mathbf{N}^7	\mathbf{O}_8	\mathbf{F}^9	Ne^{10}
6.941	9.012											10.81	12.01	14.01	16	19	20.18
\mathbf{Na}^{11}	Mg^{12}											\mathbf{Al}^{13}	Si ¹⁴	\mathbf{P}^{15}	\mathbf{S}^{16}	\mathbf{Cl}^{17}	\mathbf{Ar}^{18}
	24.31											26.98			32.06	35.45	39.95
\mathbf{K}^{19}	Ca^{20}	\mathbf{Sc}^{21}	Ti^{22}	\mathbf{V}^{23}	Cr ²⁴	Mn ²⁵	Fe^{26}	\mathbf{Co}^{27}	Ni^{28}	Cu ²⁹	\mathbf{Zn}^{30}	Ga^{31}	Ge^{32}	\mathbf{As}^{33}	Se ³⁴	Br ³⁵	Kr ³⁶
		44.96	47.9			54.94	55.85	58.93	58.71	63.54		69.72	72.59	74.92	78.96		83.8
\mathbf{Rb}^{37}	\mathbf{Sr}^{38}	\mathbf{Y}^{39}	\mathbf{Zr}^{40}	\mathbf{Nb}^{41}	Mo ⁴²	\mathbf{Tc}^{43}	Ru^{44}	Rh ⁴⁵	Pd^{46}	\mathbf{Ag}^{47}	Cd^{48}	\mathbf{In}^{49}	\mathbf{Sn}^{50}	\mathbf{Sb}^{51}	Te ⁵²	\mathbf{I}^{53}	Xe^{54}
			91.22	92.91	95.94	99.91	101.1	102.91	106.4	107.87		114.8			127.6		131.3
Cs^{55}	Ba ⁵⁶	57-71	\mathbf{Hf}^{72}	Ta ⁷³	\mathbf{W}^{74}	Re^{75}	\mathbf{Os}^{76}	\mathbf{Ir}^{77}	Pt ⁷⁸	\mathbf{Au}^{79}	\mathbf{Hg}^{80}	\mathbf{Tl}^{81}	\mathbf{Pb}^{82}	Bi ⁸³	Po ⁸⁴	At^{85}	Rn ⁸⁶
132.9	137.3	*	178.5	180.9	183.85	186.2	190.2	192.2	195.1			204.37	207.2	208.98	210	210	222

Write the best fit answer of the following questions in this table:

Q1	Q2	Q3	Q4	Q5	Q6	Q7 (1.5 pt)	Q8
(1.5 pt)	(1 pt)	(1 pt)	(1 pt)	(1 pt)	(1 pt)		(1 pt)
Q9 (1 pt)	Q10 (1 pt)	Q11 (1 pt)	Q12 (1 pt)	Q13 (1pt)		Total (13)

1. Write the <i>IONIC</i> and <i>NH</i> ₄ <i>OH</i> is weak	•	uations for the follow	ving molecular e	equation: (Hint:
Ionic:	$NH_4OH_{(aq)} + H_3PO$	$_{4(aq)} \rightarrow (NH_4)_3 PO_4(aa)$		
Net Ionic:				
2. If 40 mL of (0.1M)	HCl solution were ne	eded to neutralize 0.1	117 g of unknov	wn dihydroxide
base. What is the formu	ıla of this base?			
a) Ba(OH) ₂	b) Be(OH) ₂	c) Mg(OH) ₂	d) Ca(OH) ₂	2
3. Given the following 2 N	Redox reaction: $\text{[aI + Br}_2 \longrightarrow 2 \text{ N]}$	ſaBr + I ₂		
b) The species whic) Write the reduct	agent istch oxidized istion half equationelectrons lost or gaine			
4. A 0.1 M solution of a volume of water. Calcu			of solid AgNO	3 in a certain
a) 0.0294 mL	b) 34.0 mL	c) 294.0 mL	d) 29.4 mL	
5. Calculate ΔH for the Given the follow		$FO(g) \longrightarrow Fe$ (so ir respective enthalpy	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1
$Fe_2O_3(s)$	$+ 3 CO(g) \longrightarrow 21$	$Fe(s) + 3CO_2(g)$	- 23	<u>-</u>
	$(s) + CO(g) \longrightarrow 2$			
a) -11 kJ	$0 + CO(g) \longrightarrow 3 F$ b) 11 kJ	c) 12	+18	d) -1 kJ
a) -11 KJ	0) 11 KJ	C) 12	KJ	u) -1 KJ
	ires the preparation of and hot tap water is 55 er must be added to re	5 °C. a student starts	-	-

a) 7.5 g b) 75 g c) 313.5 g d) 25.5 g

7. An	swer the followin	g questions:			
a)	diluted solution i	S			r, the concentration of the
b)	The volume (L) is	occupied by 0.23	34 g of NH ₃	gas at 30 °C an	d a pressure of 0.85 atm
c)					
8. An of	electron transferre	d from the third e	nergy level to cess is 2.92 x	o another energy at 10 ¹⁷ s ⁻¹ . What is	level. If the frequency s the final energy level:
;	a) 2 b) 5	c) 3 d) 1			
		sodium carbonate ne following equat	-	Na ₂ CO ₃ .10H ₂ O	was heated to derive the
	Na ₂ CO ₃ .10H ₂ O(s)	\longrightarrow Na ₂ CO ₃ (s)	$+10 H_2O(g)$)	
	pressure of the wat 100 °C:	ater vapor produ	ced was 2.0	x10 ³ kPa. Calcu	late the volume of water
	a) 15.3 mL	b) 1552.1 mL	c) 4.1 m	L d) 416.2 ı	mL
Pb(NC					Lead Nitrate solution, NO ₃ (aq) according to the
	Pb($(NO_3)_2(aq) + 2 Na$	$aI(aq) \longrightarrow 2$	$NaNO_3(aq) + Pb$	$I_2(s)$
If the v	volume of NaI was	s 150 mL, calcula	te the concen	tration of Pb(NO	₃) ₂ (aq) solution:
	a) 0.8 M	b) 0.13	3 M	c) 0.26 M	d) 0.4 M
	sample of methan re. Calculate its no	_	olume of 3.8	L at 5 °C was he	eated to 86 °C at constant
	a) 2.94	b) 65.4	c) 4.91	d) 0.22	

12. Consider the flask diagramed below. What is the total pressure (in atm) after the stopcock between the two flasks is opened at 23 °C:
13. Calculate the amount of heat released (ΔH^o_{Rxn}) from the combustion of 1.0 g of CH ₃ OH according to the following equation:
$2 CH_3OH_{(l)} + 3 O_{2(g)} \rightarrow 2 CO_{2(g)} + 4 H_2O_{(l)}$
Given the following standard enthalpies of formation:
ΔH_f^o of $CO_2(g) = -394$ KJ/mol,
ΔH_{f}^{o} of $H_{2}O(1) = -286 \text{ KJ/mol}$,
ΔH_{f}^{o} of $CH_{3}OH(l) = -239KJ/mol$