CHEMISTRY 101 SECOND EXAM (132) | Name: | Date: 1/5/2014 | |-------------|----------------| | Student no. | Section: | <u>Useful Information:</u> Gas Constant R = 0.08206 L.atm/K.mol, Specific heat of $H_2O = 4.18$ J/g. °C Planck's Constant $= 6.63 \times 10^{-3}$ ⁴J.s. | H ¹ | | | | | | | | | | | | | | | | | He ² | |-----------------------|-------------------------|--------------------|--------------------|-------------------------|-------------------|-------------------------|--------------------|--------------------|-------------------------|--------------------|--------------------|--------------------|--------------------|-------------------------|-------------------------|-------------------------|------------------------| | Li^3 | \mathbf{Be}^4 | | | | | | | | | | | \mathbf{B}^5 | \mathbf{C}^6 | \mathbf{N}^7 | \mathbf{O}_8 | \mathbf{F}^9 | Ne^{10} | | 6.941 | 9.012 | | | | | | | | | | | 10.81 | 12.01 | 14.01 | 16 | 19 | 20.18 | | \mathbf{Na}^{11} | Mg^{12} | | | | | | | | | | | \mathbf{Al}^{13} | Si ¹⁴ | \mathbf{P}^{15} | \mathbf{S}^{16} | \mathbf{Cl}^{17} | \mathbf{Ar}^{18} | | | 24.31 | | | | | | | | | | | 26.98 | | | 32.06 | 35.45 | 39.95 | | \mathbf{K}^{19} | Ca^{20} | \mathbf{Sc}^{21} | Ti^{22} | \mathbf{V}^{23} | Cr ²⁴ | Mn ²⁵ | Fe^{26} | \mathbf{Co}^{27} | Ni^{28} | Cu ²⁹ | \mathbf{Zn}^{30} | Ga^{31} | Ge^{32} | \mathbf{As}^{33} | Se ³⁴ | Br ³⁵ | Kr ³⁶ | | | | 44.96 | 47.9 | | | 54.94 | 55.85 | 58.93 | 58.71 | 63.54 | | 69.72 | 72.59 | 74.92 | 78.96 | | 83.8 | | \mathbf{Rb}^{37} | \mathbf{Sr}^{38} | \mathbf{Y}^{39} | \mathbf{Zr}^{40} | \mathbf{Nb}^{41} | Mo ⁴² | \mathbf{Tc}^{43} | Ru^{44} | Rh ⁴⁵ | Pd^{46} | \mathbf{Ag}^{47} | Cd^{48} | \mathbf{In}^{49} | \mathbf{Sn}^{50} | \mathbf{Sb}^{51} | Te ⁵² | \mathbf{I}^{53} | Xe^{54} | | | | | 91.22 | 92.91 | 95.94 | 99.91 | 101.1 | 102.91 | 106.4 | 107.87 | | 114.8 | | | 127.6 | | 131.3 | | Cs^{55} | Ba ⁵⁶ | 57-71 | \mathbf{Hf}^{72} | Ta ⁷³ | \mathbf{W}^{74} | Re^{75} | \mathbf{Os}^{76} | \mathbf{Ir}^{77} | Pt ⁷⁸ | \mathbf{Au}^{79} | \mathbf{Hg}^{80} | \mathbf{Tl}^{81} | \mathbf{Pb}^{82} | Bi ⁸³ | Po ⁸⁴ | At^{85} | Rn ⁸⁶ | | 132.9 | 137.3 | * | 178.5 | 180.9 | 183.85 | 186.2 | 190.2 | 192.2 | 195.1 | | | 204.37 | 207.2 | 208.98 | 210 | 210 | 222 | Write the best fit answer of the following questions in this table: | Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 (1.5 pt) | Q8 | |--------------|---------------|---------------|---------------|--------------|--------|-------------|--------| | (1.5 pt) | (1 pt) | | (1 pt) | | Q9
(1 pt) | Q10
(1 pt) | Q11
(1 pt) | Q12
(1 pt) | Q13
(1pt) | | Total (13 |) | | 1. Write the <i>IONIC</i> and <i>NH</i> ₄ <i>OH</i> is weak | • | uations for the follow | ving molecular e | equation: (Hint: | |---|--|---|---|-----------------------| | Ionic: | $NH_4OH_{(aq)} + H_3PO$ | $_{4(aq)} \rightarrow (NH_4)_3 PO_4(aa)$ | | | | Net Ionic: | | | | | | 2. If 40 mL of (0.1M) | HCl solution were ne | eded to neutralize 0.1 | 117 g of unknov | wn dihydroxide | | base. What is the formu | ıla of this base? | | | | | a) Ba(OH) ₂ | b) Be(OH) ₂ | c) Mg(OH) ₂ | d) Ca(OH) ₂ | 2 | | 3. Given the following 2 N | Redox reaction:
$\text{[aI + Br}_2 \longrightarrow 2 \text{ N]}$ | ſaBr + I ₂ | | | | b) The species whic) Write the reduct | agent istch oxidized istion half equationelectrons lost or gaine | | | | | 4. A 0.1 M solution of a volume of water. Calcu | | | of solid AgNO | 3 in a certain | | a) 0.0294 mL | b) 34.0 mL | c) 294.0 mL | d) 29.4 mL | | | 5. Calculate ΔH for the Given the follow | | $FO(g) \longrightarrow Fe$ (so ir respective enthalpy | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 1 | | $Fe_2O_3(s)$ | $+ 3 CO(g) \longrightarrow 21$ | $Fe(s) + 3CO_2(g)$ | - 23 | <u>-</u> | | | $(s) + CO(g) \longrightarrow 2$ | | | | | a) -11 kJ | $0 + CO(g) \longrightarrow 3 F$
b) 11 kJ | c) 12 | +18 | d) -1 kJ | | a) -11 KJ | 0) 11 KJ | C) 12 | KJ | u) -1 KJ | | | ires the preparation of
and hot tap water is 55
er must be added to re | 5 °C. a student starts | - | - | a) 7.5 g b) 75 g c) 313.5 g d) 25.5 g | 7. An | swer the followin | g questions: | | | | |-----------------|--|---|----------------------------------|--|--| | a) | diluted solution i | S | | | r, the concentration of the | | b) | The volume (L) is | occupied by 0.23 | 34 g of NH ₃ | gas at 30 °C an | d a pressure of 0.85 atm | | c) | | | | | | | 8. An of | electron transferre | d from the third e | nergy level to
cess is 2.92 x | o another energy at 10 ¹⁷ s ⁻¹ . What is | level. If the frequency s the final energy level: | | ; | a) 2 b) 5 | c) 3 d) 1 | | | | | | | sodium carbonate
ne following equat | - | Na ₂ CO ₃ .10H ₂ O | was heated to derive the | | | Na ₂ CO ₃ .10H ₂ O(s) | \longrightarrow Na ₂ CO ₃ (s) | $+10 H_2O(g)$ |) | | | | pressure of the wat 100 °C: | ater vapor produ | ced was 2.0 | x10 ³ kPa. Calcu | late the volume of water | | | a) 15.3 mL | b) 1552.1 mL | c) 4.1 m | L d) 416.2 ı | mL | | Pb(NC | | | | | Lead Nitrate solution, NO ₃ (aq) according to the | | | Pb(| $(NO_3)_2(aq) + 2 Na$ | $aI(aq) \longrightarrow 2$ | $NaNO_3(aq) + Pb$ | $I_2(s)$ | | If the v | volume of NaI was | s 150 mL, calcula | te the concen | tration of Pb(NO | ₃) ₂ (aq) solution: | | | a) 0.8 M | b) 0.13 | 3 M | c) 0.26 M | d) 0.4 M | | | sample of methan
re. Calculate its no | _ | olume of 3.8 | L at 5 °C was he | eated to 86 °C at constant | | | a) 2.94 | b) 65.4 | c) 4.91 | d) 0.22 | | | 12. Consider the flask diagramed below. What is the total pressure (in atm) after the stopcock between the two flasks is opened at 23 °C: | |--| 13. Calculate the amount of heat released (ΔH^o_{Rxn}) from the combustion of 1.0 g of CH ₃ OH according to the following equation: | | $2 CH_3OH_{(l)} + 3 O_{2(g)} \rightarrow 2 CO_{2(g)} + 4 H_2O_{(l)}$ | | Given the following standard enthalpies of formation: | | ΔH_f^o of $CO_2(g) = -394$ KJ/mol, | | ΔH_{f}^{o} of $H_{2}O(1) = -286 \text{ KJ/mol}$, | | ΔH_{f}^{o} of $CH_{3}OH(l) = -239KJ/mol$ | | | | | | | | | | | | | | | | |