

CHEMISTRY 101 SECOND EXAM (131)

Name:	Date: 16/12/2013
Student no	Section:

<u>Useful Information:</u> Gas Constant R= 0.08206 L.atm/K.mol, Specific heat of H_2O =4.18 J/g. $^{\circ}C$

H ¹		_															He ²
Li^3	\mathbf{Be}^4											\mathbf{B}^5	\mathbb{C}^6	\mathbf{N}^7	\mathbf{O}_8	\mathbf{F}^9	Ne^{10}
6.941	9.012											10.81	12.01	14.01	16	19	20.18
Na^{11}	Mg^{12}											\mathbf{Al}^{13}	Si ¹⁴	\mathbf{P}^{15}	\mathbf{S}^{16}	\mathbf{Cl}^{17}	\mathbf{Ar}^{18}
	24.31											26.98	28.09	30.97	32.06	35.45	39.95
\mathbf{K}^{19}	Ca^{20}	\mathbf{Sc}^{21}	Ti^{22}	\mathbf{V}^{23}	Cr ²⁴	Mn ²⁵	Fe ²⁶	\mathbf{Co}^{27}	Ni^{28}	Cu ²⁹	\mathbf{Zn}^{30}	Ga^{31}	Ge^{32}	\mathbf{As}^{33}	Se ³⁴	\mathbf{Br}^{35}	Kr ³⁶
	40.08	44.96	47.9	50.94	51.99	54.94	55.85	58.93	58.71	63.54	65.37	69.72	72.59	74.92	78.96	79.9	83.8
\mathbf{Rb}^{37}	Sr ³⁸	\mathbf{Y}^{39}	\mathbf{Zr}^{40}	Nb^{41}	Mo ⁴²	\mathbf{Tc}^{43}	Ru ⁴⁴	Rh ⁴⁵	Pd^{46}	\mathbf{Ag}^{47}	Cd^{48}	\mathbf{In}^{49}	\mathbf{Sn}^{50}	\mathbf{Sb}^{51}	Te ⁵²	\mathbf{I}^{53}	Xe^{54}
85.47	87.62	88.91	91.22	92.91	95.94	99.91	101.1	102.91	106.4			114.8	118.69		127.6		131.3
Cs^{55}	Ba ⁵⁶	57-71	\mathbf{Hf}^{72}	Ta^{73}	W^{74}	Re ⁷⁵	\mathbf{Os}^{76}	\mathbf{Ir}^{77}	Pt ⁷⁸	Au ⁷⁹	\mathbf{Hg}^{80}	\mathbf{Tl}^{81}	Pb ⁸²	Bi ⁸³	Po ⁸⁴	At^{85}	Rn ⁸⁶
132.9	137.3	*	178.5	180.9	183.85	186.2	190.2	192.2	195.1			204.37	207.2	208.98	210	210	222

Write the best fit answer of the following questions in this table:

Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8
Q9	Q10	Q11	Q12	Q13	Q14	Total (13)	

` ′			H_2O					
a) Oxidizingb) Reducingc) Reducing	g agent in both equation agent in both equation agent in equation (1)	ns. and oxidizing ag	-					
-	An experiment calls for 0.0353 g of potassium hydroxide, KOH. How many milliliters of (0.0176 M) KOH are required:							
a) 35.8 mL	b) 0.0358 mL	c) 120.6 mL	d)	71.6 mL				
NET IONIC CH ₃ COOH _{(ac}	equations: $_{1)} + Ca(OH)_{2(aq)} \rightarrow \dots$							
Net Ionic:								
•	Hydrochloric acid (75.0 mL of 0.25 M) is added to 225.0 mL of 0.0550 M Ba(OH) ₂ solution. What is the concentration of HCl or Ba(OH) ₂ left in this solution:							
a) 0.02 M	b) 0.00938	8 M	c) 0.01 M	d) (0.005 M			
-	_			is sample was p	roduced at			
a) 31.6 mL	b) 0.032	mL c) 2.4	$\times 10^4 \mathrm{mL}$	d) 39.2 mL				
	A certain volume of concentrated H_2SO_4 (18 M) was diluted by adding 100 mL of water to give a solution of 7.0 M H_2SO_4 . The final volume of the solution will be:							
a) 200.30 mI	b) 63.64 mL	c) 36.	80 mL	d) 163.64	mL			
	Nitrogewn is a) Oxidizing b) Reducing c) Reducing d) Reducing d) Reducing d) Reducing An experime (0.0176 M) K a) 35.8 mL Complete and NET IONIC CH ₃ COOH _(ac) Ionic:	Nitrogewn is acting as: a) Oxidizing agent in both equation (b) Reducing agent in both equation (c) Reducing agent in equation (1) d) Reducing agent in equation (2) An experiment calls for 0.0353 g of (0.0176 M) KOH are required: a) 35.8 mL b) 0.0358 mL Complete and balance the followin NET IONIC equations: CH ₃ COOH _(aq) + Ca(OH) _{2(aq)} → Ionic: Net Ionic: Hydrochloric acid (75.0 mL of 0.25 solution. What is the concentration a) 0.02 M b) 0.00938 A sample of methane gas, CH ₄ , has 31 °C and 753 torr. What is the vol a) 31.6 mL b) 0.032	Nitrogewn is acting as: a) Oxidizing agent in both equations. b) Reducing agent in both equations. c) Reducing agent in equation (1) and oxidizing agent in equation (2) and oxidizing agent in equation (0.0176 M) KOH are required: a) 35.8 mL b) 0.0358 mL c) 120.6 mL Complete and balance the following molecular reach <i>NET IONIC</i> equations: CH ₃ COOH _(aq) + Ca(OH) _{2(aq)} →	Nitrogewn is acting as: a) Oxidizing agent in both equations. b) Reducing agent in both equations. c) Reducing agent in equation (1) and oxidizing agent in equat d) Reducing agent in equation (2) and oxidizing agent in equat (0.0176 M) KOH are required: a) 35.8 mL b) 0.0358 mL c) 120.6 mL d) Complete and balance the following molecular reaction then we need to be following: CH ₃ COOH _(aq) + Ca(OH) _{2(aq)} →	Nitrogewn is acting as: a) Oxidizing agent in both equations. b) Reducing agent in both equations. c) Reducing agent in equation (1) and oxidizing agent in equation (2). d) Reducing agent in equation (2) and oxidizing agent in equation (1). An experiment calls for 0.0353 g of potassium hydroxide, KOH. How many n (0.0176 M) KOH are required: a) 35.8 mL b) 0.0358 mL c) 120.6 mL d) 71.6 mL Complete and balance the following molecular reaction then write the <i>IONIC NET IONIC</i> equations: CH ₃ COOH _(aq) + Ca(OH) _{2(aq)} →			

1) Consider the following *Unbalanced* equations:

7)	Air bags in ca following equ		is generated a	according to the			
	$6 \text{ NaN}_3(s) + 1$	$Fe_2O_3(s)$ —	\rightarrow 9 N ₂ (g) + 3 N	$a_2O(s) + 2 Fe(s)$	s)		
			odium azide, Na and 748 mmHg:	N_3 would be	required to	provide 75.0 L	of
	a) 130.9 g		b) 3.0 g	c) 292.0 g	d) 14.3 g	g	
8)	Calculate ΔH Given the following	C_2	etion: $H_4(g) + H_2(g)$ tions and their re-		y changes:	I /kJ	
	$C_2H_6($	(g) + 7/2 O	$(g) \longrightarrow 2 \text{ H}_2\text{O} (g)$ $(g) \longrightarrow 3 \text{ H}_2\text{O} (g)$ $(g) \longrightarrow \text{H}_2\text{O} (g)$	$O(1) + 2CO_2$	- 141	11 660	
	a) 3257 kJ		b) 435 kJ	c) - 4	35 kJ	d) - 137 k	J
9)		22 mmHg ar CULATION	2040 M acid was and 17 °C. If the ac	eid is HCl or H ₂	SO ₄ , <i>WHICH</i>	H IS IT? SHOW	7
10	0.56 mg heliu	ım gas, He,	gas, O ₂ , which exwas added to the			_	
	in this mixtur a) 0.353 %	e.	b) 0.42 %	c) 1.99 %	d) 0.000	043 %	
11) What will be	the final ter	nperature of a mi	xture made fron	n 25.0 g of a	liquid at 15 °C,	
	45.0 g of the	same liquid	at 50 °C, and 15.	0 g of this liquid	d at 37.0 °C:		
	a) 37.41	°C t	o) 37.50 °C	c) 93.75 °C	d) 109.2	23 °C	

12) Given the following thermochemical equation:	
$C_6H_6(l) + 15/2 \ O_2(g) \rightarrow 6 \ CO_2(g) + 3 \ H_2O(l)$ $\Delta H^0 = -3271 \ kJ$	
If the heat of formation $\Delta H^o_{\ f}$ of $CO_2(g)$ and $H_2O(l)$ are -394 kJ/mol and -286 kJ/mol	1
respectively. The heat of formation $\Delta H^o_{\ f}$ of $C_6H_6(l)$ is:	
a) -320 kJ/mol b) 49 kJ/mol c) -78 kJ/mol d) 173 kJ/mol	
13) Calculate the wave length, λ (nm), for the radiation emitted when an electron transfer from fourth energy level to the first energy level:	
14) Molybdenum, Mo, is one of the transition elements which has the atomic number o	
A. Write the electron configuration of Mo	
B. Determine the number of unpaired electrons.	
C. Determine the number of valence shell electrons.	
D. What are the four quantum numbers of the valance shell electron(s)	
13)	$C_6H_6(l) + 15/2 \ O_2(g) \rightarrow 6 \ CO_2(g) + 3 \ H_2O(l)$ $\Delta H^o = -3271 \ kJ$ If the heat of formation ΔH^o_f of $CO_2(g)$ and $H_2O(l)$ are -394 kJ/mol and -286 kJ/mo respectively. The heat of formation ΔH^o_f of $C_6H_6(l)$ is: a) -320 kJ/mol b) 49 kJ/mol c) -78 kJ/mol d) 173 kJ/mol Calculate the wave length, λ (nm), for the radiation emitted when an electron transferom fourth energy level to the first energy level: Molybdenum, Mo, is one of the transition elements which has the atomic number of A. Write the electron configuration of Mo. B. Determine the number of unpaired electrons. C. Determine the number of valence shell electrons.