

CHEMISTRY 101 FIRST EXAM (132)

Name:	Date: 19/3/2014
Student no	Section:

<u>Useful Information:</u> Avogadro's number = 6.02×10^{23}

H ¹		_										_					He ²
\mathbf{Li}^3	\mathbf{Be}^4											\mathbf{B}^5	\mathbb{C}^6	\mathbf{N}^7	\mathbf{O}_8	\mathbf{F}^9	Ne^{10}
6.941	9.012											10.81	12.01	14.01	16	19	20.18
Na^{11}	\mathbf{Mg}^{12}											\mathbf{Al}^{13}	\mathbf{Si}^{14}	\mathbf{P}^{15}	\mathbf{S}^{16}	\mathbf{Cl}^{17}	\mathbf{Ar}^{18}
	24.31											26.98		30.97	32.06	35.45	39.95
\mathbf{K}^{19}	Ca^{20}	\mathbf{Sc}^{21}	Ti^{22}	\mathbf{V}^{23}	Cr ²⁴	Mn ²⁵	Fe ²⁶	\mathbf{Co}^{27}	Ni^{28}	Cu ²⁹	\mathbf{Zn}^{30}	Ga^{31}	Ge^{32}	As^{33}	Se^{34}	\mathbf{Br}^{35}	Kr ³⁶
		44.96	47.9			54.94	55.85	58.93	58.71	63.54	65.37	69.72		74.92	78.96	79.9	83.8
\mathbf{Rb}^{37}	Sr ³⁸	\mathbf{Y}^{39}	\mathbf{Zr}^{40}	\mathbf{Nb}^{41}	Mo ⁴²	\mathbf{Tc}^{43}	Ru ⁴⁴	Rh ⁴⁵	Pd^{46}	\mathbf{Ag}^{47}	Cd^{48}	\mathbf{In}^{49}	\mathbf{Sn}^{50}	\mathbf{Sb}^{51}	Te ⁵²	\mathbf{I}^{53}	Xe^{54}
85.47	87.62		91.22						106.4	107.87		114.8		121.75	127.6		131.3
Cs^{55}	Ba ⁵⁶	57-71	\mathbf{Hf}^{72}	Ta ⁷³	${ m W}^{74}$	Re ⁷⁵	\mathbf{Os}^{76}	\mathbf{Ir}^{77}	Pt ⁷⁸	\mathbf{Au}^{79}	\mathbf{Hg}^{80}	\mathbf{Tl}^{81}	\mathbf{Pb}^{82}	Bi ⁸³	Po ⁸⁴	At^{85}	R n ⁸⁶
132.9	137.3	*	178.5	180.9	183.85	186.2	190.2	192.2	195.1			204.37	207.2	208.98	210	210	222

Write the best fit answer of the following questions in this table:

Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8
(1 pt)	(0.75 pt)	(1 pt)	(1 pt)	(0.75 pt)	(1 pt)	(1.5 pt)	(1.5 pt)
Q9	Q10	Q11	Q12		Tota	l (13)	
(1 pt)	(1 pt)	(2.25 pt)	(1.25 pt)				

1.	 Choose the correct answer: The metalloid among the following (Sn, Sb, Ga, Al) is. The element which has similar properties to carbon among the following (B, Be, Si, S) is. The transition metal among the following (Ge, K, N, Hg) is. The alkali metal among the following (Cs. Sc, Cu, Al) is.
2.	A monatomic ion of an element has 23 electrons. If one isotope of this element has the mass number of 54 and 28 neutrons. What is the symbol of this ion:
	a) Ni^{5+} b) Sc^{3+} c) Fe^{3+} d) Fe^{3-}
3.	Assuming all numbers are measured quantities, perform the following arithmetic and give the answer in scientific notation rounded to the proper number of significant figures: $(19.46 - 8.5) \times 0.05 = ?$
	a) 5.5×10^{-1} b) 5.48×10^{-1} c) 5×10^{-1} d) 6×10^{-1}
4.	The element Magnesium (Mg) has three stable isotopes: ²⁴ Mg, ²⁵ Mg, and ²⁶ Mg. If the masses and the abundances of two of them are given as the following: ²⁴ Mg (23.9850 amu, 78.99%), ²⁵ Mg (24.9585 amu, 10.00%). Calculate the mass of the third isotope (²⁶ Mg):
5.	A compound composes of two elements which are Sulfur (S) and Oxygen (O). If the percent composition of sulfur in the compound is 50%, what is the empirical formula of the compound:
	a) SO b) SO_2 c) SO_3 d) SO_4
6.	A metallic rectangular prism has the mass 1.52 g and the dimensions of: Base (b) = 5.5 mm, height (h) = 6.8 mm, and length (l) = 9.9 mm. Calculate the density of the prism in (g/mL) Given that the volume of prism = $\frac{1}{2}bhl$:
	a) 8.21 b) 8.0 c) 8 d) 4.11
7.	Write the chemical formula for each of the following compounds: • Diammonium sulfide. • Barium hypochlorite. • Aluminum acetate.

8.	Write		of the following	•	s:		
	•	Hg_2O_2					
	•	CuCr ₂ O ₇	.2H ₂ O				
9.			coefficients mbustion of g		_	the chemical	reaction which
	a) 19		b) 18	c) 22	d) 13		
10.	. Whicl	n of the foll	owing has the	e largest num	ber of <i>hydrogen</i>	n molecules:	
	a) 1.2	$2 g \text{ of } B_2H_6$	b) 1.0 g	of C ₂ H ₄	c) $4.0 \text{ g of H}_2\text{S}$	d) 1.0 g	of CH ₄
11.	. Dibor	ane, B ₂ H ₆ ,	is manufactui	red according	to the following	g equation:	
			3 NaBH ₄	(s) + 4 BF3(g)	$\rightarrow 3 \text{ NaBF}_4(s)$	$S) + 2 B_2 H_6(g)$	
		_		-	F ₃ were mixed to answer the fo		•
	• W	hat was the	e limiting reac	etant			
					I ₆ which was ob		e previous
					hich will be left		cally (will not
	•••						
12.	with s	silver nitrat	te $(AgNO_3)$.	This converte		in the sample	(Cl) was reacted into 4.072 g of compound:
	a) Cr	Cl	b) CrCl ₂	c)	CrCl ₃	d) Cr ₂ Cl ₃	