Chemistry 101 First Exam | Name: | Date: 17/10/2012 | |-------------|------------------| | Student no. | Section: | <u>Useful Information:</u> $Avogadro's number = 6.02 \times 10^{23}$ | H ¹ 1.00 | | | | | | | | | | | | | | | | | He ² | |----------------------------|-------------------------|--------------------|--------------------|-------------------------|------------------|-------------------------|-------------------------|-------------------------|-------------------------|--------------------|--------------------|--------------------|-------------------------|-------------------------|-------------------------|-------------------------|------------------------| | Li^3 | \mathbf{Be}^4 | 1 | | | | | | | | | | \mathbf{B}^5 | \mathbb{C}^6 | N^7 | \mathbf{O}_8 | \mathbf{F}^9 | Ne^{10} | | 6.94 | 9.01 | | | | | | | | | | | 10.8 | 12.0 | 14.0 | 16 | 19 | 20.1 | | 1 | 2 | | | | | | | | | | | 1 | 1 | 1 | | | 8 | | \mathbf{Na}^{11} | \mathbf{Mg}^{12} | | | | | | | | | | | \mathbf{Al}^{13} | \mathbf{Si}^{14} | \mathbf{P}^{15} | \mathbf{S}^{16} | \mathbf{Cl}^{17} | \mathbf{Ar}^{18} | | 22.9 | 24.3 | | | | | | | | | | | 26.9 | 28.0 | 30.9 | 32.0 | 35.4 | 39.9 | | 9 | 1 | | | | | | | | | | | 8 | 9 | 7 | 6 | 5 | 5 | | \mathbf{K}^{19} | Ca^{20} | \mathbf{Sc}^{21} | Ti^{22} | \mathbf{V}^{23} | Cr ²⁴ | Mn ²⁵ | Fe ²⁶ | Co ²⁷ | Ni^{28} | Cu ²⁹ | \mathbf{Zn}^{30} | Ga^{31} | Ge^{32} | \mathbf{As}^{33} | Se ³⁴ | Br ³⁵ | Kr ³⁶ | | 39.1 | 40.0 | 44.96 | 47.9 | 50.9 | 51.99 | 54.9 | 55.8 | 58.9 | 58.7 | 63.5 | 65.3 | 69.7 | 72.5 | | 78.9 | | 83.8 | | 0 | 8 | | | 4 | | 4 | 5 | 3 | 1 | 4 | 7 | 2 | 9 | 2 | 6 | | | | \mathbf{Rb}^{37} | Sr^{38} | \mathbf{Y}^{39} | \mathbf{Zr}^{40} | \mathbf{Nb}^{41} | Mo ⁴² | \mathbf{Tc}^{43} | Ru ⁴⁴ | Rh ⁴⁵ | Pd^{46} | \mathbf{Ag}^{47} | Cd^{48} | \mathbf{In}^{49} | \mathbf{Sn}^{50} | \mathbf{Sb}^{51} | Te ⁵² | \mathbf{I}^{53} | Xe^{54} | | 85.4 | 87.6 | 88.91 | 91.22 | 92.9 | 95.94 | 99.9 | 101. | 102. | 106. | 107. | 112. | 114. | 118. | 121. | 127. | 126. | 131. | | 7 | 2 | | | 1 | | 1 | | 91 | | 87 | 4 | | 69 | 75 | 6 | 9 | 3 | | Cs^{55} | Ba ⁵⁶ | 57-71 | \mathbf{Hf}^{72} | Ta ⁷³ | W^{74} | Re ⁷⁵ | \mathbf{Os}^{76} | \mathbf{Ir}^{77} | Pt ⁷⁸ | Au ⁷⁹ | \mathbf{Hg}^{80} | \mathbf{Tl}^{81} | Pb ⁸² | Bi ⁸³ | Po ⁸⁴ | At ⁸⁵ | Rn ⁸⁶ | | 132. | 137. | * | 178.5 | 180. | 183.85 | 186. | 190. | 192. | 195. | 196. | 200. | 204. | 207. | | | 210 | 222 | | 9 | 3 | | | 9 | | 2 | 2 | 2 | 1 | 97 | 6 | 37 | 2 | 98 | | | | Write the best fit answer of the following questions in this table: | Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | Q8 | |----------------|---------------|---------------|---------------|---------|---------|----------|----------| | (1 pt) | (1 pt) | (1 pt) | (1 pt) | (1.0pt) | (1.0pt) | (1.0 pt) | (1.25pt) | | Q9
(1.25pt) | Q10
(2 pt) | Q11
(1 pt) | Q12
(1 pt) | | Tot | tal (12) | | | | | | | | | | | | 1. Silvand ¹⁰ | 7 Ag . Si |) (average aton
ilver consists of
of ¹⁰⁹ Ag in am | of 51.829 | =107.86
% ¹⁰⁷ A g | 58 amu)
g which | has tw
has th | o naturally
e mass of | occurring
106.905 | g isotopes, ¹⁰⁹ Ag amu. Calculate the | | |--------------------------|--|--|-----------|--|----------------------|------------------|--------------------------|----------------------|---|--| | | a. | 106.27 | b. | 105.87 | , | c. | 109.30 | d. | 108.90 | | | | 2. Perform the following arithmetic and round the answer to the proper number of significant figures: $(341.7\text{cm}^2-22\text{cm}^2)+(0.00224\text{cm X }814,050\text{cm})=?$ | | | | | | | | | | | | a. 2.1 | 15X10 ⁴ | b. 2.14 | $4X10^3$ | | c. 2.1 | $5X10^3$ | d. 7 | 2.14×10^4 | | | | | gular slab of Li
by 12.0 mm, wl | | | | | | sides that | measure 20.9 mm | | | | a. 0.5 | b. 0.5 | 532 | c. 0.53 | 30 | | d. 5.30 | | | | | to con | sist of 3
exygen. | 3.44 g Silicon a
Does these dat | and 3.91 | g of Ox
st that Q | ygen. T
Quartz is | The other | er consisted | d of 6.42 | cample was found g Silicon and 7.30 ar Element | | | 5. Wri | ite the c | chemical formu | la for ea | ch of th | e follov | ving co | mpounds: | | | | | | a. Sul | fur hexafluorid | e: | | b. Iro | on(III) S | Sulphate: | | | | | | c. Am | nmonium acetat | te: | | d. Me | ercury(I | Oxide: | | | | | 6. Wri | | name for each of | | _ | - | | | | | | | | | O ₂ : | | | | | | | | | | | c. SiBr ₄ : | | | | | | | | | | | | d. Pb ₃ | ₃ (PO ₃) ₄ : | | | | | | | | | | 7 a. T | he trans | sition metal am | ong (Pb, | Zn, Na | , Ba) is | | | | | | | | b. The | e alkali metal a | mong (C | C, Cu, C | s, Co) i | s | | | | | | | c. The | e metalloid amo | ong (S, S | e, Si, S | n) is | | | | | | | | d. The | e noble gas am | ong (Ba, | Re, Rh | , Xe) is | | | | | | | 8. Consider the following | ng balanced reaction: | $P_4 + 6 F_2 \rightarrow 4 P_1$ | F_3 | |---|---|---|---| | What mass of F ₂ is a yield? P ₄ is available | | g of PF ₃ (actually) if | the reaction has a 78.1% | | A. 77.7 g | B. 120.0 g | C. 60.7 g | D. 99.5 g | | 9. An organic compoun empirical formula is | | 6.56% H , and 8.2 | 8% N , and 28.27% O . Its | | A. $C_8H_{11}NO$ | B. $C_8H_{11}NO_3$ | $C. C_9H_{14}NO_3$ | D. $C_8H_{11}N_3O$ | | If 4.25 g of ClO ₂ is A. Which is the LINB. How many gram C. How many mole | wing balanced reaction is reacted with 0.853 g of MITING REACTANT in sof Hydrochloric acides of HClO ₃ will be for the reactant in expression of the reactant in expression. | of H ₂ O, I will be formed | | | 11. Consider the follow | ving reaction: Na ₂ S ₂ O ₃ | $+ I_2 \rightarrow NaI + Na_2S$ | ₄ O _{6.} | | The sum of all coeffi
A. 4 | cients (reactants and pr
B. 5 | roducts) in the balance C. 6 | ed equation is: .A
D. 7 | | 12. The number of carb
A. 6.5 X 10 ²⁴ | on atoms exist in 1.8 g
B. 3.6 X 10 ²² | of Glucose (C ₆ H ₁₂ O ₆
C. 6.02 X 10 ²¹ | 5) is:
D. 1 X 10 ²¹ | -Good Luck-