

Chemistry 101 First Exam

Name:	Date: 17/10/2012
Student no.	Section:

<u>Useful Information:</u> $Avogadro's number = 6.02 \times 10^{23}$

H ¹ 1.00																	He ²
Li^3	\mathbf{Be}^4	1										\mathbf{B}^5	\mathbb{C}^6	N^7	\mathbf{O}_8	\mathbf{F}^9	Ne^{10}
6.94	9.01											10.8	12.0	14.0	16	19	20.1
1	2											1	1	1			8
\mathbf{Na}^{11}	\mathbf{Mg}^{12}											\mathbf{Al}^{13}	\mathbf{Si}^{14}	\mathbf{P}^{15}	\mathbf{S}^{16}	\mathbf{Cl}^{17}	\mathbf{Ar}^{18}
22.9	24.3											26.9	28.0	30.9	32.0	35.4	39.9
9	1											8	9	7	6	5	5
\mathbf{K}^{19}	Ca^{20}	\mathbf{Sc}^{21}	Ti^{22}	\mathbf{V}^{23}	Cr ²⁴	Mn ²⁵	Fe ²⁶	Co ²⁷	Ni^{28}	Cu ²⁹	\mathbf{Zn}^{30}	Ga^{31}	Ge^{32}	\mathbf{As}^{33}	Se ³⁴	Br ³⁵	Kr ³⁶
39.1	40.0	44.96	47.9	50.9	51.99	54.9	55.8	58.9	58.7	63.5	65.3	69.7	72.5		78.9		83.8
0	8			4		4	5	3	1	4	7	2	9	2	6		
\mathbf{Rb}^{37}	Sr^{38}	\mathbf{Y}^{39}	\mathbf{Zr}^{40}	\mathbf{Nb}^{41}	Mo ⁴²	\mathbf{Tc}^{43}	Ru ⁴⁴	Rh ⁴⁵	Pd^{46}	\mathbf{Ag}^{47}	Cd^{48}	\mathbf{In}^{49}	\mathbf{Sn}^{50}	\mathbf{Sb}^{51}	Te ⁵²	\mathbf{I}^{53}	Xe^{54}
85.4	87.6	88.91	91.22	92.9	95.94	99.9	101.	102.	106.	107.	112.	114.	118.	121.	127.	126.	131.
7	2			1		1		91		87	4		69	75	6	9	3
Cs^{55}	Ba ⁵⁶	57-71	\mathbf{Hf}^{72}	Ta ⁷³	W^{74}	Re ⁷⁵	\mathbf{Os}^{76}	\mathbf{Ir}^{77}	Pt ⁷⁸	Au ⁷⁹	\mathbf{Hg}^{80}	\mathbf{Tl}^{81}	Pb ⁸²	Bi ⁸³	Po ⁸⁴	At ⁸⁵	Rn ⁸⁶
132.	137.	*	178.5	180.	183.85	186.	190.	192.	195.	196.	200.	204.	207.			210	222
9	3			9		2	2	2	1	97	6	37	2	98			

Write the best fit answer of the following questions in this table:

Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8
(1 pt)	(1 pt)	(1 pt)	(1 pt)	(1.0pt)	(1.0pt)	(1.0 pt)	(1.25pt)
Q9 (1.25pt)	Q10 (2 pt)	Q11 (1 pt)	Q12 (1 pt)		Tot	tal (12)	

1. Silvand ¹⁰	7 Ag . Si) (average aton ilver consists of of ¹⁰⁹ Ag in am	of 51.829	=107.86 % ¹⁰⁷ A g	58 amu) g which	has tw has th	o naturally e mass of	occurring 106.905	g isotopes, ¹⁰⁹ Ag amu. Calculate the	
	a.	106.27	b.	105.87	,	c.	109.30	d.	108.90	
	2. Perform the following arithmetic and round the answer to the proper number of significant figures: $(341.7\text{cm}^2-22\text{cm}^2)+(0.00224\text{cm X }814,050\text{cm})=?$									
	a. 2.1	15X10 ⁴	b. 2.14	$4X10^3$		c. 2.1	$5X10^3$	d. 7	2.14×10^4	
		gular slab of Li by 12.0 mm, wl						sides that	measure 20.9 mm	
	a. 0.5	b. 0.5	532	c. 0.53	30		d. 5.30			
to con	sist of 3 exygen.	3.44 g Silicon a Does these dat	and 3.91	g of Ox st that Q	ygen. T Quartz is	The other	er consisted	d of 6.42	cample was found g Silicon and 7.30 ar Element	
5. Wri	ite the c	chemical formu	la for ea	ch of th	e follov	ving co	mpounds:			
	a. Sul	fur hexafluorid	e:		b. Iro	on(III) S	Sulphate:			
	c. Am	nmonium acetat	te:		d. Me	ercury(I	Oxide:			
6. Wri		name for each of		_	-					
		O ₂ :								
	c. SiBr ₄ :									
	d. Pb ₃	₃ (PO ₃) ₄ :								
7 a. T	he trans	sition metal am	ong (Pb,	Zn, Na	, Ba) is					
	b. The	e alkali metal a	mong (C	C, Cu, C	s, Co) i	s				
	c. The	e metalloid amo	ong (S, S	e, Si, S	n) is					
	d. The	e noble gas am	ong (Ba,	Re, Rh	, Xe) is					

8. Consider the following	ng balanced reaction:	$P_4 + 6 F_2 \rightarrow 4 P_1$	F_3
What mass of F ₂ is a yield? P ₄ is available		g of PF ₃ (actually) if	the reaction has a 78.1%
A. 77.7 g	B. 120.0 g	C. 60.7 g	D. 99.5 g
9. An organic compoun empirical formula is		6.56% H , and 8.2	8% N , and 28.27% O . Its
A. $C_8H_{11}NO$	B. $C_8H_{11}NO_3$	$C. C_9H_{14}NO_3$	D. $C_8H_{11}N_3O$
If 4.25 g of ClO ₂ is A. Which is the LINB. How many gram C. How many mole	wing balanced reaction is reacted with 0.853 g of MITING REACTANT in sof Hydrochloric acides of HClO ₃ will be for the reactant in expression of the reactant in expression.	of H ₂ O, I will be formed	
11. Consider the follow	ving reaction: Na ₂ S ₂ O ₃	$+ I_2 \rightarrow NaI + Na_2S$	₄ O _{6.}
The sum of all coeffi A. 4	cients (reactants and pr B. 5	roducts) in the balance C. 6	ed equation is: .A D. 7
12. The number of carb A. 6.5 X 10 ²⁴	on atoms exist in 1.8 g B. 3.6 X 10 ²²	of Glucose (C ₆ H ₁₂ O ₆ C. 6.02 X 10 ²¹	5) is: D. 1 X 10 ²¹

-Good Luck-