

CHEMISTRY 101 SECOND EXAM(121)

Name:	Date: 16/12/2012
Student no	Section:

<u>**Useful Information:**</u> Gas Constant R= 0.08206 L.atm/K.mol

H ¹		_										_					He ²
Li^3	\mathbf{Be}^4											\mathbf{B}^5	\mathbf{C}^6	\mathbf{N}^7	\mathbf{O}_8	\mathbf{F}^9	Ne^{10}
6.941	9.012											10.81	12.01	14.01	16	19	20.18
Na^{11}	\mathbf{Mg}^{12}											\mathbf{Al}^{13}	\mathbf{Si}^{14}	\mathbf{P}^{15}	\mathbf{S}^{16}	\mathbf{Cl}^{17}	\mathbf{Ar}^{18}
	24.31											26.98		30.97	32.06	35.45	39.95
\mathbf{K}^{19}	Ca^{20}	\mathbf{Sc}^{21}	Ti^{22}	\mathbf{V}^{23}	Cr ²⁴	Mn ²⁵	Fe ²⁶	\mathbf{Co}^{27}	Ni^{28}	Cu ²⁹	\mathbf{Zn}^{30}	Ga^{31}	Ge^{32}	As^{33}	Se^{34}	\mathbf{Br}^{35}	Kr ³⁶
		44.96	47.9	50.94	51.99	54.94	55.85	58.93	58.71	63.54	65.37	69.72		74.92	78.96	79.9	83.8
\mathbf{Rb}^{37}	Sr ³⁸	\mathbf{Y}^{39}	\mathbf{Zr}^{40}	\mathbf{Nb}^{41}	Mo ⁴²	\mathbf{Tc}^{43}	Ru ⁴⁴	Rh ⁴⁵	Pd^{46}	\mathbf{Ag}^{47}	Cd^{48}	\mathbf{In}^{49}	\mathbf{Sn}^{50}	\mathbf{Sb}^{51}	Te ⁵²	\mathbf{I}^{53}	Xe^{54}
85.47	87.62		91.22						106.4	107.87		114.8		121.75	127.6		131.3
Cs^{55}	Ba ⁵⁶	57-71	\mathbf{Hf}^{72}	Ta ⁷³	${ m W}^{74}$	Re ⁷⁵	\mathbf{Os}^{76}	\mathbf{Ir}^{77}	Pt ⁷⁸	\mathbf{Au}^{79}	\mathbf{Hg}^{80}	\mathbf{Tl}^{81}	\mathbf{Pb}^{82}	Bi ⁸³	Po ⁸⁴	At^{85}	R n ⁸⁶
132.9	137.3	*	178.5	180.9	183.85	186.2	190.2	192.2	195.1			204.37	207.2	208.98	210	210	222

Write the best fit answer of the following questions in this table:

Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8
Q9	Q10	Q11	Q12	Q13	Total (12)		

	a. CrO ₂	b. HCrCl ₄	c. Cr_3O_2	d. K_2C	$\mathrm{Cr}_2\mathrm{O}_7$				
2. One of the following reactions does not represent <i>redox</i> reaction: a. $2Al + 6HCl \longrightarrow 3H_2 + 2AlCl_3$ b. $2H_2O \longrightarrow 2H_2 + O_2$ c. $2NaCl + Pb(NO_3)_2 \longrightarrow PbCl_2 + 2NaNO_3$ d. $2NaI + Br_2 \longrightarrow 2NaBr + I_2$									
3. Alu	minum reacts	with excess H ₂ SO ₄ a	according to the	following equation	on:				
A	$Al + H_2SO_4$	→ Al ₂	$(SO_4)_3 + H_2$	(Unbalanced)					
The	e Volume of a	0.1 M acid required	to react comple	tely with 1 g alur	ninum is:				
	a. 370.4 mL	b. 555.6	mL	c. 740.8 mL	d. 200.0 mL				
4. Calc	ulate ΔH for tl	ne reaction:							
	$C_{(graphite)}$ + $2H_{2(g)}$ + $\frac{1}{2}O_{2(g)}$ \longrightarrow $CH_3OH_{(l)}$ Given the following reactions and their respective enthalpy changes: $\Delta H/kJ$								
		$H_{(1)} + 3/2O_{2(g)}$ —		$H_2O_{(l)}$	-726.4				
		$ \begin{array}{ccc} \text{ite)} & + & O_{2(g)} & \longrightarrow \\ 1/2O_{2(g)} & \longrightarrow & H \end{array} $			-393.5 -285.8				
		b618.		c238.7					
		5. 5.5.			2				
5. If 60 ml of water was added to 120 mL of 0.450 M KCl solution. What was the molarity of the resulting solution:									
		tion:							
		tion: b. 0.150	M	c. 0.225 M	d. 0.300 M				
	resulting solu		M	c. 0.225 M	d. 0.300 M				
6. If 10	a. 0.600 M ml of 0.2 M N		red to neutralize						
6. If 10	a. 0.600 M ml of 0.2 M N	b. 0.150 NaOH solution requi	red to neutralize						
6. If 10	a. 0.600 M oml of 0.2 M N onl. What was the	b. 0.150 NaOH solution requi he Volume of the ac	red to neutralize	a sample of 0.1	M phosphoric acid				

1. If the oxidation number of chromium (Cr) is (3+), then one of the following representations is

correct:

temperature will be:

b. 11

c. 5.5

d. 0.55

a. 1.0

8. Consider th	e reaction:					
2H ₂ O -		→ 2H ₂ -	$+$ O_2 Δ	H= +483.6 KJ	/mol	
	-	If the increase in reaction. (Hint:		_	n external pressi	ure of 1.00
a. 963.9 KJ		b. 480.3 KJ	c. 483.6 K	J d.	450.9 KJ	
iron w	eighing 20.	ing 10.0 g and a 0 g and at a temp (Specific Heat o	perature of 55	.6 °C. What is	the final tempera	
a. 61.9	°C	b. 52.9 °C	c. 50.8 °C	d.	68.1 °C	
the vaj	por pressure	oxygen is collected of water at 23 or oy at STP is:			*	
a. 329 n	nL b	. 311 mL	c. 387	7 mL	d. 416 ı	nL
-	_	placed into 0.29 sk is 101 KPa, ca		°C if 0.1 g of 0	O_2 is added so th	at the tota
The pressu	are of N ₂ ga	s:				
The mass	of N ₂ gas:					
		ple of gas is 750 1.00 L under a			ı. At what tempe	erature wil
a. 618.	.7 K 1	o. 415.0 K		c. 215.0 K	d. 2	98 K
2Cu + 2I	HCI —	oxidized to a Cu 2CuCl	+ H ₂	0 1		
a. 22.4 L	b. 12.2 I	c. 0.05	L d.	1.1 L		