

CHEMISTRY 101 SECOND EXAM

Name:	Date: 29/04/2012
Student no	Section:

<u>**Useful Information:**</u> *Gas Constant R= 0.08206 L.atm/K.mol*

H ¹		_										_					He ²
\mathbf{Li}^3	\mathbf{Be}^4											\mathbf{B}^5	\mathbf{C}^6	\mathbf{N}^7	\mathbf{O}_8	\mathbf{F}^9	Ne^{10}
6.941	9.012											10.81	12.01	14.01	16	19	20.18
Na^{11}	\mathbf{Mg}^{12}											\mathbf{Al}^{13}	Si ¹⁴	\mathbf{P}^{15}	\mathbf{S}^{16}	\mathbf{Cl}^{17}	\mathbf{Ar}^{18}
22.99	24.31											26.98			32.06	35.45	39.95
\mathbf{K}^{19}	Ca^{20}	\mathbf{Sc}^{21}	Ti^{22}	\mathbf{V}^{23}	Cr^{24}	Mn ²⁵	Fe^{26}	\mathbf{Co}^{27}	Ni^{28}	Cu ²⁹	$\mathbf{Z}\mathbf{n}^{30}$	Ga^{31}	Ge^{32}	As^{33}	Se ³⁴	\mathbf{Br}^{35}	\mathbf{Kr}^{36}
		44.96	47.9	50.94	51.99	54.94	55.85	58.93	58.71	63.54	65.37	69.72		74.92	78.96	79.9	83.8
\mathbf{Rb}^{37}	Sr ³⁸	\mathbf{Y}^{39}	\mathbf{Zr}^{40}	Nb^{41}	Mo ⁴²	\mathbf{Tc}^{43}	Ru ⁴⁴	Rh ⁴⁵	Pd^{46}	\mathbf{Ag}^{47}	Cd^{48}	\mathbf{In}^{49}	\mathbf{Sn}^{50}	\mathbf{Sb}^{51}	Te ⁵²	\mathbf{I}^{53}	Xe^{54}
	87.62	88.91	91.22			99.91	101.1	102.91	106.4	107.87		114.8			127.6		131.3
Cs^{55}	Ba ⁵⁶	57-71	\mathbf{Hf}^{72}	Ta^{73}	W^{74}	Re^{75}	\mathbf{Os}^{76}	\mathbf{Ir}^{77}	Pt ⁷⁸	\mathbf{Au}^{79}	\mathbf{Hg}^{80}	\mathbf{Tl}^{81}	\mathbf{Pb}^{82}	Bi ⁸³	Po ⁸⁴	At^{85}	R n ⁸⁶
132.9	137.3	*	178.5	180.9	183.85	186.2	190.2	192.2	195.1			204.37	207.2	208.98	210	210	222

Write the best fit answer of the following questions in this table:

Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8
Q9	Q10	Q11	Q12	Q13	Q14	Q15	Q16

	a. 100 mL	b. 125 mL	c. 250 mL	d. 625 mL					
2. 25 mL of 0.10 M AgNO ₃ solution were mixed with 10 mL of 0.10 M K_3PO_4 solution. Calculate the mass of Ag_3PO_4 precipitate formed according to the following equation: $3 \text{ AgNO}_{3(aq)} + K_3PO_{4(aq)} \rightarrow Ag_3PO_{4(s)} + 3 \text{ KNO}_{3(aq)}$									
	a. 0.35 g	b. 0.42 g		d. 1.05					
3. 45.	3. 45.0 mL of an aqueous solution of HNO ₃ were needed to neutralize 0.456 g of Mg(OH) ₂ . Calculate the molarity of the HNO ₃ solution.								
	a. 0.17 M	b. 0.35 M	c. 0.70 M	d. 0.91 M					
4. Calculate ΔH for the reaction: $ 2C_{(s)} + H_{2(g)} \longrightarrow C_2 H_{2(g)} $ Given the following reactions and their respective enthalpy changes: $ \frac{\Delta H/kJ}{C_2H_{2(g)} + 5/2O_{2(g)}} \longrightarrow 2CO_{2(g)} + H_2O_{(l)} \qquad -1299 $ $C_{(s)} + O_{2(g)} \longrightarrow CO_{2(g)} \qquad -393 $ $H_{2(g)} + 1/2O_{2(g)} \longrightarrow H_2O_{(g)} \qquad -245 $									
	$H_2O_{(l)} \longrightarrow$	ζ,	+40						
	a. 228 kJ	b. 268 kJ	c. 621 kJ	d. 661 kJ					
5. If 6.5 g of NaOH _(s) dissolves in 100 g H ₂ O in a coffee-cup calorimeter, the temperature rises from 21.6°C to 37.8°C. ΔH (in kJ/mol NaOH) for this process is: (Assume specific heat of solution is equal to the specific heat of water = 4.18 J/g°C, and that the coffee-cup doesn't gain heat)									
	a. 7.2	b. 44.4	c. 4.2	d. 16.2					
6. A gas expands from 152 L to 189 L at a constant external pressure of 2 atm. It absorbs thereby 5000 J of heat. Calculate the change in the internal energy of the gas. a2498 J b. +4926 J c4926 J d. +2498 J									
				—					
7. The	density of CH ₄ (g) at	20°C and 2 atm is:							
	a. 0.67 g/L	b. 1.0 g/L	c. 1.34 g/L	d. 16 g/L					

1. Calculate the volume of water that must be added to 500 mL of 0.125 M HCl solution in order

to dilute it to exactly 0.100 M.

	olume of 10.0 L contains the pressure in the vesse		03 g of H ₂ gas and 79.9 g of Ar
a. 0.471 atm	b. 6.43 atm	c. 3.20 atm.	d. 5.62 atm
9. Given the equatio Which of the	n: $S_{(s)} + O_{2(g)} \rightarrow S$ following statement(s) i	$SO_{2(g)}$ Δ H=-296 kJ ; s (are) true?	
I. The reaction	on is exothermic.		
II. When 0.5	0 mol $S_{(s)}$ is reacted, 148	kJ of energy is relea	sed.
III. When 32	$2.0 \text{ g of } S_{(s)}$ are burned, 2	.96×10 ⁵ J of energy is	s released.
	a. All are true.	b. None is tru	e.
	c. I and II are true.	d. On	ly I is true.
	* *	$O_{(l)} \longrightarrow 2H_{2(g)} + Ca$ nough water, what vo c. 89.6 L	plume of H ₂ will be produced at
11. The oxidizing ag		$T \rightarrow IO_3^- + NO_2$	
a. NO ₃	b. ľ	c. IO ₃	d. NO ₂
	ns of Na ⁺ and Cl ⁻ ?	ueous NaCl is 1.07 c. 0.0183 mol/L	71 g/cm ³ , what is the molar d. 62.7 mol/L
13. What volume of a. 145 ml	2.00 M Pb(NO ₃) ₂ contai b. 2.9 ml c. 1.45 ı	•	
_	volved at the anode of a erature of 647°C. On its	•	rsis cell at the rate of 3.65 np it is cooled to 63°C.

Calculate the rate of intake to the pump assuming the pressure has remained constant.

c. 1.33 L/min

d. 1330 L/ min

b. 0.355 L/min

a. 355 L/min

15. The enthalpy of combustion of acetylene gas, C ₂ H ₂ (g), at 25°C is -1299.58 kJ/mol	
Determine the enthalpy of formation of acetylene. Given that ΔH_f of CO_2 is -393.51 KJ/m	nol
and for H_2O is -285.83 KJ/mol.	

a. -226.73 KJ/mol

b. 2371 KJ/mol

c. 226.73 KJ/mol

d. -2371 KJ/mol

16.A certain hydrate has a formula of $MgSO_4.XH_2O$ a sample of 54.2 g of the compound is heated to drive the water off. I f the steam generated exerts a pressure of 24.8 atm in 2.00 L container at 120 °C calculate x.

a. 4

b. 5

c. 6

d. 7