

CHEMISTRY 101 FINAL EXAM

Name:	Date: 19/05/2012
Student no.	Section:

Useful Information:

<u>Rydberg's constant= $1.1 \times 10^{-2} \text{ nm}^{-1}$ </u> <u>A= $2.18 \times 10^{-18} \text{ J}$; <u>c=3×10⁸ m/s</u>; <u>h=6.6×10⁻³⁴ Js</u>; <u>Navogadro=6.02×10²³ mol⁻¹ General gas constant R=8.314 J/mol.K=0.0821 atm.L/mol.K</u>; 1atm=760 torr=101325 Pa</u>

H ¹																	\mathbf{He}^2_{4}
\mathbf{Li}^3	\mathbf{Be}^4											\mathbf{B}^5	\mathbf{C}^6	\mathbf{N}^7	\mathbf{O}_8	\mathbf{F}^9	Ne ¹⁰
6.941	9.012											10.81	12.01	14.01	16		
\mathbf{Na}^{11}	\mathbf{Mg}^{12}											\mathbf{Al}^{13}	\mathbf{Si}^{14}	\mathbf{P}^{15}	\mathbf{S}^{16}	Cl ¹⁷	Ar^{18}
22.99												26.98	28.09	30.97	32.06		39.95
\mathbf{K}^{19}	Ca ²⁰	\mathbf{Sc}^{21}	Ti^{22}	\mathbf{V}^{23}	Cr ²⁴	\mathbf{Mn}^{25}	Fe^{26}	\mathbf{Co}^{27}	Ni ²⁸	Cu ²⁹	\mathbf{Zn}^{30}	Ga^{31}	Ge^{32}	\mathbf{As}^{33}	Se ³⁴	Br ³⁵	Kr ³⁶
39.10		44.96	47.9	50.94	51.99	54.94	55.85								78.96		
\mathbf{Rb}^{37}	\mathbf{Sr}^{38}	\mathbf{Y}^{39}	\mathbf{Zr}^{40}	\mathbf{Nb}^{41}	Mo ⁴²	\mathbf{Tc}^{43}	Ru ⁴⁴	\mathbf{Rh}^{45}	Pd^{46}	\mathbf{Ag}^{47}	\mathbf{Cd}^{48}	In ⁴⁹	Sn ⁵⁰	\mathbf{Sb}^{51}	Te ⁵²	\mathbf{I}^{53}	Xe^{54}
85.47	87.62	88.91	91.22	92.91	95.94		101.1		106.4		112.4	114.8			127.6		
$\mathbf{C}\mathbf{s}^{55}$	Ba ⁵⁶	57-71	\mathbf{Hf}^{72}	Ta ⁷³	W^{74}	Re ⁷⁵	Os^{76}	Ir^{77}	Pt ⁷⁸	Au^{79}	Hg^{80}	\mathbf{Tl}^{81}	Pb ⁸²	Bi ⁸³	Po ⁸⁴	At^{85}	Rn ⁸⁶
132.9	137.3	*	178.5	180.9	183.85	186.2	190.2	192.2	195.1	196.97		204.37	207.2	208.98	210	210	222

Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	
(1.5 pt)	(1.5 pt)	(1.5 pt)	(1.5 pt)	(1.5 pt)	(1.5 pt)	(1 pt)	(1pt)	
Q9 (1.5 pt)	Q10 (1.5 pt)	Q11 (1.5 pt)	Q12 (1.5 pt)	Q13 (3 pts)	Q14 (1 pt)	Q15 (1.5 pt)	Q16 (1.5 pt)	
Q17	Q18	Q19	Q20	Q21 (2 pts)	Q22	Q23	Q24	
(1.5 pt)	(1.5 pt)	(1.5 pt)	(1 pt)		(1 pt)	(1.5 pt)	(1.5 pt)	
Q25	Q26	Q27	Q28	<u>Total (40)</u>				
(1.5 pt)	(1.5 pt)	(1.5 pt)	(3 pts)					

Circle the best fit answer of each of the following questions:

1.	Calculate the number	r of oxygen atoms in 3	g $K_2Cr_2O_7$.					
	a. 6.14×10^{21}	b. 1.02×10 ²²	c. 4.30×10^{22}	d. 7.12×10^{22}				
2.	40.0 mL of an H ₂ SO ₄	solution was titrated w	ith 0.215 M NaOH. If	27 mL of the NaOH				
	solution was required to exactly neutralize the H ₂ SO ₄ solution, what was the concentration							
	of the acid?							
	a. 0.073 M	b. 0.095 M	c. 0.145 M	d. 0.19 M				
3.	Given the balanced ed	quation: $2 ZnS + 3 O_2$	\rightarrow 2 ZnO + 2 SO ₂					
	If 227g of ZnS, and 2	55g of O ₂ are mixed to	gether, what is the am	ount (in grams) of SO ₂				
	that can be formed?							
	a. 128.0 g	b. 149.1 g	c. 214.8 g	d. 340 .0 g				
4.	What volume of 0.1 M	M HCl must be added t	o 50 mL 0.2 M HCl to	give 0.18 M HCl				
	solution?							
	a. 12.5 mL	b. 50 mL	c. 100 mL	d. 200 mL				
5.	A sample of Chlorofo	orm (consists of C, H, a	and Cl) is found to con	tain 24.0 g of C, 212 g				
	of Cl, and 2.02 g of H	I. If a second sample of	f Chloroform is found	to contain 30.0 g of C,				
	what is the total mass	of the second sample	of Chloroform?					
	a. 598 g	b. 299 g	c. 149 g	d. 1000 g				
6.	The element with high	hest first ionization en	ergy is					
	a. S	b. P	c. Al	d. Na				
7.	Which one of the follow	owing sets of quantum	numbers in an atom is	s <u>not</u> possible				
	a. $n = 3$; $\ell = 2$; $m_{\ell} = -1$	b. $n = 3$; $\ell = 1$; $m_{\ell} = -1$	-1				
	c. $n = 3$; $\ell = 0$; $m_{\ell} = 0$	d. $n = 3$; $\ell = 3$; $m_{\ell} = -1$	-1				
8.	What is the energy of	one photon that has a	wavelength of 500 nm	?				

a. $2.18 \times 10^{-18} \,\mathrm{J}$ b. $1.63 \times 10^{-18} \,\mathrm{J}$ c. $3.96 \times 10^{-19} \,\mathrm{J}$ d. $2.83 \times 10^{-19} \,\mathrm{J}$

9. Hydrogen peroxide decomposes according to the following thermochemical reaction									
	ΔH =-98.2 kJ $H_2O_{2(\ell)} \rightarrow H_2O_{(\ell)} + \frac{1}{2}O_{2(g)}$								
T	The change in enthalpy (ΔH) when 1.00 g of hydrogen peroxide decomposes is								
a98	3.2 kJ	b289 J	c. +2.89 kJ	d2.89 kJ					
10 What	n o 1 00 a samm	la of hydroxina (N. II	is burned in a bomb	a colonimaton tha					
10. When a 1.00 g sample of hydrazine (N ₂ H ₄) is burned in a bomb calorimeter, the temperature rises from 24.62°C to 28.16°C. If the heat capacity of the bomb calorimeter is									
•	temperature rises from 24.62°C to 28.16°C. If the heat capacity of the bomb calorimeter is 5.856 kJ/°C , the energy of combustion (ΔE) of one-gram sample is								
	0.7 kJ/g		c. +169.8 J/g						
a. <i>⊤</i> ∠	0.7 KJ/g	020.7 3 /g	c. +107.8 J/g	u1/ kJ/g					
11. Calcu	ulate ΔH° of the	following <u>unbalanc</u>	ced reaction						
		$PCl_{5(g)} + H_2O_{(g)} \longrightarrow P$	$POCl_{3(g)} + HCl_{(g)}$						
Giver	n the following	heats of formation:	$\Delta H_{\mathrm{f}}^{ \mathrm{o}}(\mathrm{PC}$	$Cl_{5(g)} = -287 \text{ kJ/mol};$					
$\Delta H_{\rm f}^{\ o}($	$H_2O_{(g)})=-242 \text{ k}$	J/mol; $\Delta H_f^{\circ}(HCl_{(g)})=$	–92 kJ/mol; ΔH _f °(PO	Cl _{3(g)})=–559 kJ/mol					
a. +2	14 kJ/mol	b. +122 kJ/mol	c122 kJ/mol	d214 kJ/mol					
12. A 24	L container fill	ed with O ₂ at a given	temperature has a pro	essure of 6.0 atm. If the					
oxyg	en is allowed to	expand to 36 L, ther	n the new pressure at t	he same temperature is					
a. 8 a	ıtm	b. 6 atm	c. 4 atm	d. 2 atm					
13. Fill i	n the blanks:								
a.	The name of C	Cr(HSO ₃) ₂ is							
b.	The formula o	f ferrous chlorite is _							
c.	The electron c	onfiguration of Cu is	3						
d.	The oxidation	number of Cl in NaC	OCl is						
e.	electrons. The anion contains 17 proton and 18 electrons. The name of the								
f.	compound is Which of the following sublevels (1s, 1p, 7d, 9s, 3f, 4f, 2d) is (are) incorrect								
14. The b	oond angle in IC	Cl ₂ is							
a. 90	0	b. 109.5°	c. 120°	d. 180°					

15. The correct order of increasing ionic	size is					
a. $Ba^{2+} < Cs^+ < Te^{2-} < \Gamma$		$b. Cs^+ < Ba^2$	$^{2+} < Te^{2-} < I$	-		
c. $Ba^{2+} < Cs^+ < \Gamma < Te^{2-}$		d. $Cs^+ < Ba^{2+} < \Gamma < Te^{2-}$				
16. The correct order of increasing ionic	character (pola	arity) of the b	ond is			
a. $N-O < Br-Br < C-F < K-F$		b. $Br-Br < B$	X-F < N-O	< C-F		
c. Br-B $r < C-F < N-O < K-F$		d. $Br-Br < N$	N- O < C- F	< K-F		
17. The preferred Lewis structure for the	molecule (NN	O) is				
a. $ \overline{N} = \overline{N} - \overline{Q} $ b. $ N = N - \overline{Q} $	c. \overline{N} -	Ñ= <u>Ō</u>	d. <u>™</u> -1	√- <u>0</u> I		
18. What is the molecular geometry (sha	pe) of the mole	ecule XeOF ₂	?			
a. Trigonal pyramidal b. T-sh	aped c. T	Triangualr pla	anar	d. V-shaped		
19. The correct order of increasing bond	angle in the fo	llowing mole	ecules is:			
a. $SO_2 < SO_3 < SO_3^{2-} < SO_4^{2-}$		b. $SO_4^{2-} < S$	$\mathrm{O_3}^{2}$ < $\mathrm{SO_2}$	$2 < SO_3$		
c. $SO_3^{2-} < SO_4^{2-} < SO_3 < SO_2$		d. $SO_3^{2-} < S$	$\mathrm{O_4}^{2-} < \mathrm{SO_2}$	$_2$ < SO ₃		
20. Which one of the following molecule	es is polar?					
a. CHCl ₃ b. XeF	2	c. X	eF ₄	d. BCl ₃		
21. Based on the Lewis structures of the	following mole	ecules (N ₂ , N	I_2H_4, N_2F_2	answer the		
given questions:						
a. The hybridization of the N-ato	m in N ₂ F ₂ is					
b. The molecule that has the long	est N-N bond i	is				
c. The molecule that has $\underline{two} \pi b$	onds is					
d. The formal charge on nitrogen	in N_2H_4 is					
22. What is the volume of a 5.750 x 10 ³ a. 1.44 cm ³ b. 1448 cm ³	mg object that c. 1.45	has a density	y of 3.97 g l. 0.690 cm	/ml?		
23. Which <u>one</u> of the following species l	nas the <u>maxim</u>	um number o	of unpaire	<u>d</u> electrons:		
a. Fe ³⁺	b. Mo	c. O	d. Ar			

of XC	Cl ₂ with excess	th a Dichloride Cl ₂ forms 12.5				_
	comic Mass of Pb	X) b. Cr	c. Mn		d. Co	
25. What r solutio		is contained in				queous
a. 2.3	3 g t	o. 2.5 g	c. 4000 g	d. 4.0	g	
pressui	re of O ₂ in the	k contains 0.00 flask ? b. 0.21a				the partial
	$\begin{array}{l} Fe_2O_{3(S)} \ + \ 3 \\ 3 \ Fe_2O_{3(S)} \ + \end{array}$		$2 \operatorname{Fe}_{(s)} + 3 \operatorname{CO}_{2}$ $\operatorname{Fe}_{3}\operatorname{O}_{4(S)} + \operatorname{CO}_{2}$	oir respective e $O_{2(g)}$		ges:
a. 11 k	J	b11 kJ		c. 1 2 kJ	d.	-1 kJ
28. Draw structures		e lewis structure	e of the followi	ng species the	n draw the res	onance
a. POCl ₃ _						
b. O ₃ _						_
c. NO ₄ ³						
		a. Easy b.				cult