CHEMISTRY 101 FINAL EXAM | Name: | Date: 19/05/2012 | |-------------|------------------| | Student no. | Section: | ## **Useful Information:** <u>Rydberg's constant= $1.1 \times 10^{-2} \text{ nm}^{-1}$ </u> <u>A= $2.18 \times 10^{-18} \text{ J}$; <u>c=3×10⁸ m/s</u>; <u>h=6.6×10⁻³⁴ Js</u>; <u>Navogadro=6.02×10²³ mol⁻¹ General gas constant R=8.314 J/mol.K=0.0821 atm.L/mol.K</u>; 1atm=760 torr=101325 Pa</u> | H ¹ | | | | | | | | | | | | | | | | | \mathbf{He}^2_{4} | |-----------------------------|-------------------------|--------------------|--------------------|-------------------------|------------------|--------------------|------------------|--------------------|-------------------------|--------------------|--------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|---------------------| | \mathbf{Li}^3 | \mathbf{Be}^4 | | | | | | | | | | | \mathbf{B}^5 | \mathbf{C}^6 | \mathbf{N}^7 | \mathbf{O}_8 | \mathbf{F}^9 | Ne ¹⁰ | | 6.941 | 9.012 | | | | | | | | | | | 10.81 | 12.01 | 14.01 | 16 | | | | \mathbf{Na}^{11} | \mathbf{Mg}^{12} | | | | | | | | | | | \mathbf{Al}^{13} | \mathbf{Si}^{14} | \mathbf{P}^{15} | \mathbf{S}^{16} | Cl ¹⁷ | Ar^{18} | | 22.99 | | | | | | | | | | | | 26.98 | 28.09 | 30.97 | 32.06 | | 39.95 | | \mathbf{K}^{19} | Ca ²⁰ | \mathbf{Sc}^{21} | Ti^{22} | \mathbf{V}^{23} | Cr ²⁴ | \mathbf{Mn}^{25} | Fe^{26} | \mathbf{Co}^{27} | Ni ²⁸ | Cu ²⁹ | \mathbf{Zn}^{30} | Ga^{31} | Ge^{32} | \mathbf{As}^{33} | Se ³⁴ | Br ³⁵ | Kr ³⁶ | | 39.10 | | 44.96 | 47.9 | 50.94 | 51.99 | 54.94 | 55.85 | | | | | | | | 78.96 | | | | \mathbf{Rb}^{37} | \mathbf{Sr}^{38} | \mathbf{Y}^{39} | \mathbf{Zr}^{40} | \mathbf{Nb}^{41} | Mo ⁴² | \mathbf{Tc}^{43} | Ru ⁴⁴ | \mathbf{Rh}^{45} | Pd^{46} | \mathbf{Ag}^{47} | \mathbf{Cd}^{48} | In ⁴⁹ | Sn ⁵⁰ | \mathbf{Sb}^{51} | Te ⁵² | \mathbf{I}^{53} | Xe^{54} | | 85.47 | 87.62 | 88.91 | 91.22 | 92.91 | 95.94 | | 101.1 | | 106.4 | | 112.4 | 114.8 | | | 127.6 | | | | $\mathbf{C}\mathbf{s}^{55}$ | Ba ⁵⁶ | 57-71 | \mathbf{Hf}^{72} | Ta ⁷³ | W^{74} | Re ⁷⁵ | Os^{76} | Ir^{77} | Pt ⁷⁸ | Au^{79} | Hg^{80} | \mathbf{Tl}^{81} | Pb ⁸² | Bi ⁸³ | Po ⁸⁴ | At^{85} | Rn ⁸⁶ | | 132.9 | 137.3 | * | 178.5 | 180.9 | 183.85 | 186.2 | 190.2 | 192.2 | 195.1 | 196.97 | | 204.37 | 207.2 | 208.98 | 210 | 210 | 222 | | Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | Q8 | | |----------------|-----------------|--------------|-----------------|-------------------|---------------|-----------------|-----------------|--| | (1.5 pt) | (1 pt) | (1pt) | | | Q9
(1.5 pt) | Q10
(1.5 pt) | Q11 (1.5 pt) | Q12
(1.5 pt) | Q13 (3 pts) | Q14
(1 pt) | Q15
(1.5 pt) | Q16
(1.5 pt) | | | Q17 | Q18 | Q19 | Q20 | Q21 (2 pts) | Q22 | Q23 | Q24 | | | (1.5 pt) | (1.5 pt) | (1.5 pt) | (1 pt) | | (1 pt) | (1.5 pt) | (1.5 pt) | | | Q25 | Q26 | Q27 | Q28 | <u>Total (40)</u> | | | | | | (1.5 pt) | (1.5 pt) | (1.5 pt) | (3 pts) | | | | | | ## Circle the best fit answer of each of the following questions: | 1. | Calculate the number | r of oxygen atoms in 3 | g $K_2Cr_2O_7$. | | | | | | |----|---|------------------------------------|---|------------------------------------|--|--|--|--| | | a. 6.14×10^{21} | b. 1.02×10 ²² | c. 4.30×10^{22} | d. 7.12×10^{22} | | | | | | 2. | 40.0 mL of an H ₂ SO ₄ | solution was titrated w | ith 0.215 M NaOH. If | 27 mL of the NaOH | | | | | | | solution was required to exactly neutralize the H ₂ SO ₄ solution, what was the concentration | | | | | | | | | | of the acid? | | | | | | | | | | a. 0.073 M | b. 0.095 M | c. 0.145 M | d. 0.19 M | | | | | | 3. | Given the balanced ed | quation: $2 ZnS + 3 O_2$ | \rightarrow 2 ZnO + 2 SO ₂ | | | | | | | | If 227g of ZnS, and 2 | 55g of O ₂ are mixed to | gether, what is the am | ount (in grams) of SO ₂ | | | | | | | that can be formed? | | | | | | | | | | a. 128.0 g | b. 149.1 g | c. 214.8 g | d. 340 .0 g | | | | | | 4. | What volume of 0.1 M | M HCl must be added t | o 50 mL 0.2 M HCl to | give 0.18 M HCl | | | | | | | solution? | | | | | | | | | | a. 12.5 mL | b. 50 mL | c. 100 mL | d. 200 mL | | | | | | 5. | A sample of Chlorofo | orm (consists of C, H, a | and Cl) is found to con | tain 24.0 g of C, 212 g | | | | | | | of Cl, and 2.02 g of H | I. If a second sample of | f Chloroform is found | to contain 30.0 g of C, | | | | | | | what is the total mass | of the second sample | of Chloroform? | | | | | | | | a. 598 g | b. 299 g | c. 149 g | d. 1000 g | | | | | | 6. | The element with high | hest first ionization en | ergy is | | | | | | | | a. S | b. P | c. Al | d. Na | | | | | | 7. | Which one of the follow | owing sets of quantum | numbers in an atom is | s <u>not</u> possible | | | | | | | a. $n = 3$; $\ell = 2$ | ; $m_{\ell} = -1$ | b. $n = 3$; $\ell = 1$; $m_{\ell} = -1$ | -1 | | | | | | | c. $n = 3$; $\ell = 0$ | ; $m_{\ell} = 0$ | d. $n = 3$; $\ell = 3$; $m_{\ell} = -1$ | -1 | | | | | | 8. | What is the energy of | one photon that has a | wavelength of 500 nm | ? | | | | | a. $2.18 \times 10^{-18} \,\mathrm{J}$ b. $1.63 \times 10^{-18} \,\mathrm{J}$ c. $3.96 \times 10^{-19} \,\mathrm{J}$ d. $2.83 \times 10^{-19} \,\mathrm{J}$ | 9. Hydrogen peroxide decomposes according to the following thermochemical reaction | | | | | | | | | | |--|--|---|---|------------------------------------|--|--|--|--|--| | | ΔH =-98.2 kJ $H_2O_{2(\ell)} \rightarrow H_2O_{(\ell)} + \frac{1}{2}O_{2(g)}$ | | | | | | | | | | T | The change in enthalpy (ΔH) when 1.00 g of hydrogen peroxide decomposes is | | | | | | | | | | a98 | 3.2 kJ | b289 J | c. +2.89 kJ | d2.89 kJ | | | | | | | 10 What | n o 1 00 a samm | la of hydroxina (N. II | is burned in a bomb | a colonimaton tha | | | | | | | 10. When a 1.00 g sample of hydrazine (N ₂ H ₄) is burned in a bomb calorimeter, the temperature rises from 24.62°C to 28.16°C. If the heat capacity of the bomb calorimeter is | | | | | | | | | | | • | temperature rises from 24.62°C to 28.16°C. If the heat capacity of the bomb calorimeter is 5.856 kJ/°C , the energy of combustion (ΔE) of one-gram sample is | | | | | | | | | | | 0.7 kJ/g | | c. +169.8 J/g | | | | | | | | a. <i>⊤</i> ∠ | 0.7 KJ/g | 020.7 3 /g | c. +107.8 J/g | u1/ kJ/g | | | | | | | 11. Calcu | ulate ΔH° of the | following <u>unbalanc</u> | ced reaction | | | | | | | | | | $PCl_{5(g)} + H_2O_{(g)} \longrightarrow P$ | $POCl_{3(g)} + HCl_{(g)}$ | | | | | | | | Giver | n the following | heats of formation: | $\Delta H_{\mathrm{f}}^{ \mathrm{o}}(\mathrm{PC}$ | $Cl_{5(g)} = -287 \text{ kJ/mol};$ | | | | | | | $\Delta H_{\rm f}^{\ o}($ | $H_2O_{(g)})=-242 \text{ k}$ | J/mol; $\Delta H_f^{\circ}(HCl_{(g)})=$ | –92 kJ/mol; ΔH _f °(PO | Cl _{3(g)})=–559 kJ/mol | | | | | | | a. +2 | 14 kJ/mol | b. +122 kJ/mol | c122 kJ/mol | d214 kJ/mol | | | | | | | 12. A 24 | L container fill | ed with O ₂ at a given | temperature has a pro | essure of 6.0 atm. If the | | | | | | | oxyg | en is allowed to | expand to 36 L, ther | n the new pressure at t | he same temperature is | | | | | | | a. 8 a | ıtm | b. 6 atm | c. 4 atm | d. 2 atm | | | | | | | 13. Fill i | n the blanks: | | | | | | | | | | a. | The name of C | Cr(HSO ₃) ₂ is | | | | | | | | | b. | The formula o | f ferrous chlorite is _ | | | | | | | | | c. | The electron c | onfiguration of Cu is | 3 | | | | | | | | d. | The oxidation | number of Cl in NaC | OCl is | | | | | | | | e. | electrons. The anion contains 17 proton and 18 electrons. The name of the | | | | | | | | | | f. | compound is Which of the following sublevels (1s, 1p, 7d, 9s, 3f, 4f, 2d) is (are) incorrect | | | | | | | | | | 14. The b | oond angle in IC | Cl ₂ is | | | | | | | | | a. 90 | 0 | b. 109.5° | c. 120° | d. 180° | | | | | | | 15. The correct order of increasing ionic | size is | | | | | | |---|---------------------------------------|--|--------------------------------------|------------------------|--|--| | a. $Ba^{2+} < Cs^+ < Te^{2-} < \Gamma$ | | $b. Cs^+ < Ba^2$ | $^{2+} < Te^{2-} < I$ | - | | | | c. $Ba^{2+} < Cs^+ < \Gamma < Te^{2-}$ | | d. $Cs^+ < Ba^{2+} < \Gamma < Te^{2-}$ | | | | | | 16. The correct order of increasing ionic | character (pola | arity) of the b | ond is | | | | | a. $N-O < Br-Br < C-F < K-F$ | | b. $Br-Br < B$ | X-F < N-O | < C-F | | | | c. Br-B $r < C-F < N-O < K-F$ | | d. $Br-Br < N$ | N- O < C- F | < K-F | | | | 17. The preferred Lewis structure for the | molecule (NN | O) is | | | | | | a. $ \overline{N} = \overline{N} - \overline{Q} $ b. $ N = N - \overline{Q} $ | c. \overline{N} - | Ñ= <u>Ō</u> | d. <u>™</u> -1 | √- <u>0</u> I | | | | 18. What is the molecular geometry (sha | pe) of the mole | ecule XeOF ₂ | ? | | | | | a. Trigonal pyramidal b. T-sh | aped c. T | Triangualr pla | anar | d. V-shaped | | | | 19. The correct order of increasing bond | angle in the fo | llowing mole | ecules is: | | | | | a. $SO_2 < SO_3 < SO_3^{2-} < SO_4^{2-}$ | | b. $SO_4^{2-} < S$ | $\mathrm{O_3}^{2}$ < $\mathrm{SO_2}$ | $2 < SO_3$ | | | | c. $SO_3^{2-} < SO_4^{2-} < SO_3 < SO_2$ | | d. $SO_3^{2-} < S$ | $\mathrm{O_4}^{2-} < \mathrm{SO_2}$ | $_2$ < SO ₃ | | | | 20. Which one of the following molecule | es is polar? | | | | | | | a. CHCl ₃ b. XeF | 2 | c. X | eF ₄ | d. BCl ₃ | | | | 21. Based on the Lewis structures of the | following mole | ecules (N ₂ , N | I_2H_4, N_2F_2 | answer the | | | | given questions: | | | | | | | | a. The hybridization of the N-ato | m in N ₂ F ₂ is | | | | | | | b. The molecule that has the long | est N-N bond i | is | | | | | | c. The molecule that has $\underline{two} \pi b$ | onds is | | | | | | | d. The formal charge on nitrogen | in N_2H_4 is | | | | | | | 22. What is the volume of a 5.750 x 10 ³ a. 1.44 cm ³ b. 1448 cm ³ | mg object that c. 1.45 | has a density | y of 3.97 g
l. 0.690 cm | /ml? | | | | 23. Which <u>one</u> of the following species l | nas the <u>maxim</u> | um number o | of unpaire | <u>d</u> electrons: | | | | a. Fe ³⁺ | b. Mo | c. O | d. Ar | | | | | of XC | Cl ₂ with excess | th a Dichloride Cl ₂ forms 12.5 | | | | _ | |---------------------------------|---|--|---|-----------------------------|----------------|-------------| | | comic Mass of Pb | X)
b. Cr | c. Mn | | d. Co | | | 25. What r
solutio | | is contained in | | | | queous | | a. 2.3 | 3 g t | o. 2.5 g | c. 4000 g | d. 4.0 | g | | | pressui | re of O ₂ in the | k contains 0.00
flask ?
b. 0.21a | | | | the partial | | | $\begin{array}{l} Fe_2O_{3(S)} \ + \ 3 \\ 3 \ Fe_2O_{3(S)} \ + \end{array}$ | | $2 \operatorname{Fe}_{(s)} + 3 \operatorname{CO}_{2}$
$\operatorname{Fe}_{3}\operatorname{O}_{4(S)} + \operatorname{CO}_{2}$ | oir respective e $O_{2(g)}$ | | ges: | | a. 11 k | J | b11 kJ | | c. 1 2 kJ | d. | -1 kJ | | 28. Draw structures | | e lewis structure | e of the followi | ng species the | n draw the res | onance | | a. POCl ₃ _ | | | | | | | | b. O ₃ _ | | | | | | _ | | c. NO ₄ ³ | | | | | | | | | | a. Easy b. | | | | cult |