Molecular Geometry VSEPR model

- Valence Shell Electron Pair Repulsion
- Shape of molecule is determined by the repulsion of electron pairs around the <u>central</u> atom.
- The repulsion must be minimum, i.e. Electron pairs are farthest from each other (<u>potential</u> <u>energy minimum</u>).

Rules

- Draw the right Lewis Structure (formal charge!).
- Determine the number of electron pairs around the central atom.
 - Multiple bonds are treated as if they were one electron pair because these electron pairs can not be separated from each other
 - -2, 3, 4, 5 or 6 EP.

Two EP around Central Atom (AX₂)

Shape: linear

Bond angle Cl-Be-Cl = 180° C

Three EP around Central Atom (AX3)

Shape: planar triangular

Bond angle F-B-F = 120° $\stackrel{\cdot}{\subset}$ X-A-X

Three EP around Central Atom (AX3)

Shape: V-shaped (bent)

Bond angle O-S- $O \le 120^{\circ}$ $\bigcirc X$ -A-X

Shape: tetrahedral

Bond angle H-C-H = 109.5° $\subset X$ -A-X

Shape: trigonal pyramidal

Bond angle H-N-H $\leq 109.5^{\circ}$ $\bigcirc X$ -A-X

Shape: V-shaped

Bond angle H-O-H $\leq 109.5^{\circ}$ $\bigcirc X$ -A-X

Shape: trigonal bipyramidal

Bond angle Cl-P-Cl = 120° , 90°

Lone EP occupies a <u>larger space</u> than bonding EP.

Shape: disordered tetrahedral Bond angle $Cl-P-Cl = 120^{\circ}, 90^{\circ}$ CX-A-X

Lone EP occupies a <u>larger space</u> than bonding EP.

Shape: T-shaped

Bond angle Cl-P-Cl = 120°, 90°

Lone EP occupies a <u>larger space</u> than bonding EP.

Shape: linear

Bond angle Cl-I-Cl = 180°

Shape: octahedral

Bond angle F-S-F = 90° $\bigcirc X$ -A-X

Shape: square pyramidal

Bond angle Cl-I- $Cl = 90^{\circ}$ C X-A-X

Shape: square planar

Bond angle F-Xe-F= 90° $\bigcirc X$ -A-X

Group	Type	Example	Molecular Geometry	polarity	Bond angle
2	AX ₂	BeCl ₂	linear	*	180°
3	AX ₃	BF_3	planar triangular	*	120°
	AX ₂ E	SO ₂	V-shaped	✓	<120°
4	AX ₄	CH ₄	tetrahedral	*	109.5°
	AX ₃ E	NH ₃	trigonal pyramidal	✓	<109.5°
	AX_2E_2	H ₂ O	V-shaped	✓	<109.5°
5	AX ₅	PCI ₅	trigonal bipyramidal	*	120°, 90°
	AX ₄ E	SF ₄	disordered tetrahedral	✓	120°, 90°
	AX_3E_2	ICl ₃	T-shaped	✓	90°
	AX_2E_3	ICl ₂ -	linear	*	180°
6	AX ₆	SF ₆	octahedral	*	90°
	AX ₅ E	ICI ₅	square pyramidal	✓	90°
	AX_4E_2	XeF ₄	square planar	*	90°

Hybridization

How is the bond formed in H_2 molecule?

Increase in the electron density on the line connecting the two nuclei.

σ-bond

How is the bond formed in CH_4 molecule?

Problem: Only two unpaired electrons in C atom!! CH₂!!!!

<u>Now:</u> 4 unpaired electrons in C atom \Rightarrow 4 bonds!

Problem: bonds are not equivalent:

Bond angle H-C-H = 90° NOT 109.5°

can not be correct!

Hybridization

How is the bond formed in NH₃ molecule?

Overlap of $1s_H$ - $2p_N$??

Problem: bonds are perpendicular to each other!!

3 bonds

Actually 107° which is close to 109.5 ° not to 90 °.

N in NH₃

Overlap of s_H - sp^3_N

0 in H₂0

Bond angle 90°!!

No. of mixed orbitals = No. of σ bonds + No. of lone EP

$$CH_4$$
: $4+0 = 4 (1 s + 3 p) = 4 sp^3$

$$NH_3$$
: $3+1=4(1 s + 3 p) = 4 sp^3$

$$H_2O: 2+2 = 4 (1 s + 3 p) = 4 sp^3$$

Key numberNo. of mixed orbitals = No. of σ bonds + No. of lone EP

Key number	Hybridi- zation	Group	Туре	Molecular Geometry
2	sp	2	AX_2	linear
3	sp^2	3	AX_3	planar triangular
			AX_2E	V-shaped
4	sp^3	4	AX_4	tetrahedral
			AX_3E	trigonal pyramidal
			AX_2E_2	V-shaped
5	sp ³ d	5	AX_5	trigonal bipyramidal
			AX_4E	disordered tetrahedral
			AX_3E_2	T-shaped
			AX_2E_3	linear
6	sp^3d^2	6	AX_6	octahedral
			AX_5E	square pyramidal
			AX_4E_2	square planar