Molecular Geometry VSEPR model - Valence Shell Electron Pair Repulsion - Shape of molecule is determined by the repulsion of electron pairs around the <u>central</u> atom. - The repulsion must be minimum, i.e. Electron pairs are farthest from each other (<u>potential</u> <u>energy minimum</u>). #### Rules - Draw the right Lewis Structure (formal charge!). - Determine the number of electron pairs around the central atom. - Multiple bonds are treated as if they were one electron pair because these electron pairs can not be separated from each other - -2, 3, 4, 5 or 6 EP. # **Two EP around Central Atom (AX₂)** Shape: linear Bond angle Cl-Be-Cl = 180° C #### **Three EP around Central Atom (AX3)** Shape: planar triangular Bond angle F-B-F = 120° $\stackrel{\cdot}{\subset}$ X-A-X ### **Three EP around Central Atom (AX3)** Shape: V-shaped (bent) Bond angle O-S- $O \le 120^{\circ}$ $\bigcirc X$ -A-X Shape: tetrahedral Bond angle H-C-H = 109.5° $\subset X$ -A-X Shape: trigonal pyramidal Bond angle H-N-H $\leq 109.5^{\circ}$ $\bigcirc X$ -A-X Shape: V-shaped Bond angle H-O-H $\leq 109.5^{\circ}$ $\bigcirc X$ -A-X Shape: trigonal bipyramidal Bond angle Cl-P-Cl = 120° , 90° Lone EP occupies a <u>larger space</u> than bonding EP. Shape: disordered tetrahedral Bond angle $Cl-P-Cl = 120^{\circ}, 90^{\circ}$ CX-A-X Lone EP occupies a <u>larger space</u> than bonding EP. Shape: T-shaped **Bond angle Cl-P-Cl** = 120°, 90° Lone EP occupies a <u>larger space</u> than bonding EP. Shape: linear **Bond angle Cl-I-Cl = 180°** Shape: octahedral Bond angle F-S-F = 90° $\bigcirc X$ -A-X Shape: square pyramidal Bond angle Cl-I- $Cl = 90^{\circ}$ C X-A-X Shape: square planar Bond angle F-Xe-F= 90° $\bigcirc X$ -A-X | Group | Type | Example | Molecular Geometry | polarity | Bond angle | |-------|-------------------|--------------------|---------------------------|----------|------------| | 2 | AX ₂ | BeCl ₂ | linear | * | 180° | | 3 | AX ₃ | BF_3 | planar triangular | * | 120° | | | AX ₂ E | SO ₂ | V-shaped | ✓ | <120° | | 4 | AX ₄ | CH ₄ | tetrahedral | * | 109.5° | | | AX ₃ E | NH ₃ | trigonal pyramidal | ✓ | <109.5° | | | AX_2E_2 | H ₂ O | V-shaped | ✓ | <109.5° | | 5 | AX ₅ | PCI ₅ | trigonal bipyramidal | * | 120°, 90° | | | AX ₄ E | SF ₄ | disordered tetrahedral | ✓ | 120°, 90° | | | AX_3E_2 | ICl ₃ | T-shaped | ✓ | 90° | | | AX_2E_3 | ICl ₂ - | linear | * | 180° | | 6 | AX ₆ | SF ₆ | octahedral | * | 90° | | | AX ₅ E | ICI ₅ | square pyramidal | ✓ | 90° | | | AX_4E_2 | XeF ₄ | square planar | * | 90° | # Hybridization How is the bond formed in H_2 molecule? Increase in the electron density on the line connecting the two nuclei. σ-bond #### How is the bond formed in CH_4 molecule? **Problem:** Only two unpaired electrons in C atom!! CH₂!!!! <u>Now:</u> 4 unpaired electrons in C atom \Rightarrow 4 bonds! **Problem:** bonds are not equivalent: #### **Bond angle H-C-H = 90° NOT 109.5°** #### can not be correct! #### Hybridization #### How is the bond formed in NH₃ molecule? Overlap of $1s_H$ - $2p_N$?? **Problem:** bonds are perpendicular to each other!! 3 bonds Actually 107° which is close to 109.5 ° not to 90 °. N in NH₃ Overlap of s_H - sp^3_N 0 in H₂0 Bond angle 90°!! # No. of mixed orbitals = No. of σ bonds + No. of lone EP $$CH_4$$: $4+0 = 4 (1 s + 3 p) = 4 sp^3$ $$NH_3$$: $3+1=4(1 s + 3 p) = 4 sp^3$ $$H_2O: 2+2 = 4 (1 s + 3 p) = 4 sp^3$$ **Key number**No. of mixed orbitals = No. of σ bonds + No. of lone EP | Key
number | Hybridi-
zation | Group | Туре | Molecular Geometry | |---------------|--------------------|-------|-----------|------------------------| | 2 | sp | 2 | AX_2 | linear | | 3 | sp^2 | 3 | AX_3 | planar triangular | | | | | AX_2E | V-shaped | | 4 | sp^3 | 4 | AX_4 | tetrahedral | | | | | AX_3E | trigonal pyramidal | | | | | AX_2E_2 | V-shaped | | 5 | sp ³ d | 5 | AX_5 | trigonal bipyramidal | | | | | AX_4E | disordered tetrahedral | | | | | AX_3E_2 | T-shaped | | | | | AX_2E_3 | linear | | 6 | sp^3d^2 | 6 | AX_6 | octahedral | | | | | AX_5E | square pyramidal | | | | | AX_4E_2 | square planar |