

CHEMISTRY 101 FINAL EXAM(121)

Name:	Date: 14/01/2013
Student no	Section:

Useful Information:

 $h=6.6\times 10^{-34} \ Js;$ $A=2.18\times 10^{-18} \ J;$ $Rydberg's\ constant=1.1\times 10^{-2}\ nm^{1-},\ c=3\times 10^{8}\ m/s$ $General\ gas\ constant\ R=8.314\ J/mol.K=0.0821\ atm.L/mol.K;$ $N_{avogadro}=6.02\times 10^{23}\ mol^{-1}\ 1atm=760\ torr=101325\ Pa.$

H ¹		_															He ²
\mathbf{Li}^3	\mathbf{Be}^4											\mathbf{B}^5	\mathbb{C}^6	\mathbf{N}^7	\mathbf{O}_8	\mathbf{F}^9	Ne^{10}
6.941	9.012											10.81	12.01	14.01	16	19	20.18
\mathbf{Na}^{11}	\mathbf{Mg}^{12}											\mathbf{Al}^{13}	Si ¹⁴	\mathbf{P}^{15}	\mathbf{S}^{16}	\mathbf{Cl}^{17}	\mathbf{Ar}^{18}
22.99	24.31											26.98	28.09	30.97	32.06	35.45	39.95
\mathbf{K}^{19}	Ca^{20}	\mathbf{Sc}^{21}	Ti^{22}	\mathbf{V}^{23}	Cr^{24}	\mathbf{Mn}^{25}	Fe ²⁶	\mathbf{Co}^{27}	Ni^{28}	Cu ²⁹	\mathbf{Zn}^{30}	Ga^{31}	Ge^{32}	\mathbf{As}^{33}	Se ³⁴	\mathbf{Br}^{35}	\mathbf{Kr}^{36}
		44.96	47.9			54.94	55.85	58.93	58.71	63.54	65.37	69.72	72.59	74.92	78.96	79.9	83.8
\mathbf{Rb}^{37}	Sr ³⁸	\mathbf{Y}^{39}	\mathbf{Zr}^{40}	\mathbf{Nb}^{41}	Mo ⁴²	\mathbf{Tc}^{43}	Ru ⁴⁴	Rh ⁴⁵	Pd^{46}	\mathbf{Ag}^{47}	Cd^{48}	\mathbf{In}^{49}	\mathbf{Sn}^{50}	\mathbf{Sb}^{51}	Te ⁵²	\mathbf{I}^{53}	Xe^{54}
85.47	87.62	88.91	91.22			99.91	101.1	102.91	106.4			114.8	118.69		127.6		131.3
Cs^{55}	Ba ⁵⁶	57-71	\mathbf{Hf}^{72}	Ta^{73}	W^{74}	Re ⁷⁵	\mathbf{Os}^{76}	\mathbf{Ir}^{77}	Pt ⁷⁸	Au ⁷⁹	\mathbf{Hg}^{80}	\mathbf{Tl}^{81}	Pb ⁸²	Bi ⁸³	Po ⁸⁴	At^{85}	Rn ⁸⁶
132.9	137.3	*	178.5	180.9	183.85	186.2	190.2	192.2	195.1			204.37	207.2	208.98	210	210	222

Write the best fit answer of the following questions in this table:

Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9
(1.5 pt)	(1.5 pt)	(2 pts)	(1.5 pt)	(1.5 pt)	(1.5 pt)	(2 pts)	(2 pts)	(1.5 pt)
Q10	Q11	Q12	Q13	Q14	Q15	Q16	Q17	Q18
(1.5 pt)	(1.5 pt)	(2 pts)	(2 pts)	(1.5 pt)	(2 pt)	(1.5 pt)	(3 pts)	(2 pt)
Q19	Q20	Q21	Q21	Q23	Q24	Q25	ТОТ	AL (40)
(1.5 pt)	(1.5 pt)	(1.5 pt)	(2 pt)	(1.5 pt)	(2 pts)	(3 pts)		

1.				ok 20.27 mL of 0.1578 M olar mass of the acid is:
	a. 2290 g/mol	,	c. 22.9 g/mol	
2.	Calculate the mass	of KI required to prep	are 500 mL of 2.80 M	solution:
	a. 464.8 g	b. 232.4 g	c. $2.324 \times 10^5 \mathrm{g}$	d. 118.6 g
3.	_	$\mathbf{g}(\mathbf{g}) + 5 \mathbf{F}_2(\mathbf{g}) \longrightarrow$	_	4 according to the following
ī	The limiting reactan			
	C		not react is	
111	. The percentage yier	d of the reaction is		
4.	mass and its density i	s 1.03 g/mL calculate	the mass of NaCl exis	vater contains 3.1 % NaCl by t in sea-water: d. 4.80 x 10 ¹⁹ kg
5	. What is the percenta	ge by mass of oxygen	in ethanol (C_2H_6O):	
	a. 11.1 % b. 3	30.7 % c. 34.7	% d. 39.2 %	
6	then the heat of form	nation of water in (kJ/	mol) is:	er, librates 28.2 kJ of heat,
_	a286 kJ/mol	b28.2 kJ/mol	c282 kJ/mol	d2.82 kJ/mol
7	. Given the following	-		
		$H_2O_{(1)}$ $\Delta H = -286 \text{ k}$		
	$S_{(s)} + 3/2 O_{2(g)} \longrightarrow$	$SO_{3(g)}$ $\Delta H = -395 l$	κJ	
	Then, for the follow	ving reaction		
	$3H_{2(g)} + SO_{3(g)}$	$S_{(s)} + 3 H_2 O_{(l)}$	AH is:	
	a463 kJ/mol	b. +463 kJ/mol	c. +926 kJ/mol	d926 kJ/mol

8. A	metal with a	mass of 70.0	0 grams at an o	original t	emperature o	of 95.2 ℃	c is dropped into a	
cal	calorimeter with 100.00 grams of water at an original temperature of 25.1 °C. The final							
ten	temperature of the water and the metal is 28.6 °C. Calculate:							
I.	The hea	at capacity of	the metal					
II.	Specifi	c heat of the r	netal					
							rst energy level:	
a.	-2.04 x 10 ⁻¹	° J	b. +2.04 x 10	-18 J	c. 1.63 x 10) ⁻¹⁸ J	$d 1.63 \times 10^{-18} J$	
10.	The evidet	ion number o	f chlorine (Cl)	in coloiu	m narahlarat	o Co(ClC).). ia:	
10.			c7		in percinorai	e Ca(CiC	<i>1</i> 4 <i>)</i> 2 18.	
	a1	D. +1	C/	u. +7				
11.	The maxim	num number c	of electrons tha	t can be	occupied in /	2 = 3 subb	evel and n =4 main	
	respectivel		r orocarons and	c can oc	occupied in c			
	•	-	4 electrons	c 6 8	Relectrons	d 10) 24 electrons	
a. 1	1 4 , 32 electr	ons 0. 10, 1	4 electrons	c. 0, c	ciccions	u. 10	, 24 electrons	
12.	Boron (B)	has tow isotor	\cos^{10} B and 11 B	3. if the a	verage atom	ic mass o	of Boron is 10.8.	
		-	nposition (natu		•			
					,			
-20								
13.	Assume yo	ou place 0.167	g of gaseous o	compoun	d in 0.346 L	flask. It e	exerts a pressure of	
0.42	27 atm. At 3	0 °C. The com	rect formula of	the com	pound is:			
a	C_2H_6	b. C_2H_2	c. C_2H_2	4	$d. C_6H_6$			
14.	Elemental	Ni is combine	ed with CO (ca	rbon mo	noxide) to gi	ve a com	pound with the	
forn	nula of Ni(C	CO) _X . If 0.125	g of Ni combi	ned with	CO to give	0.364 g o	of $Ni(CO)_X$. What is	
the	value of x :							
	a. 1	b. :	2 c. 3	}	d. 4			
15.	If the pressu	re of a confin	ed gas sample	is doubl	ed, while the	volume	is held constant.	
	What will h	appen to the t	emperature:					
a	.halved	b. doubled	c. it went up	by the fa	actor of 4	d. no c	hange	

thest electron affinity is:
Ga c. As d. Ca
n peroxide is
s
uration of Ag is
gen atom is
npirical formula of CHO. Its molar mass is 116.1 g/mol, what is its
C) at STP is
mpounds has 120° bond angle: a. BF_4^- c. H_2O d. NH_3
$3r_5$:
b. square pyramidal c. square planer d. octahedron
as of quantum numbers (n, ℓ , m $_{\ell}$, m $_{s}$) could represent the last infiguration of $^{35}{\rm Br}$: 1, 1, +1/2 c. 4, 1, 1, +1/2 d. 4, 2, 1, -1/2
the preferred Lewis structure for NNO is: b. $ N=N-\overline{\bigcirc} $ c. $ \overline{N}-\overline{N}=\overline{\bigcirc}$ d. $ \overline{\underline{N}}-N-\overline{\bigcirc} $
tronegativities is not correct:
$b. Ba > S \qquad \qquad c. O > N \qquad d. B > C$
mpounds has 120° bond angle: a. BF ₄ c. H ₂ O d. NH ₃ Br ₅ : b. square pyramidal c. square planer d. octahedres of quantum numbers $(n, \ell, m_{\ell}, m_{s})$ could represent the last affiguration of 35 Br: 1, 1, +1/2 c. 4, 1, 1, +1/2 d. 4, 2, 1, -1/2 the preferred Lewis structure for NNO is: b. $ N=N-\overline{Q} $ c. $ \overline{N}-\overline{N}=\overline{Q} $ d. $ \overline{N}-\overline{N}-\overline{Q} $ tronegativities is not correct:

23. Arrange the following ions in order of increasing the ionic radii:
a. $Cl^{-} > S^{-2} > P^{-3} > K^{+} > Ca^{+2}$
b. $P^{-3} > S^{-2} > Cl^{-} > K^{+} > Ca^{+2}$
c. $P^{-3} > S^{-2} > Ca^{+2} > Cl^{-} > K^{+}$
d. $S^{-2} > P^{-3} > Cl^{-} > K^{+} > Ca^{+2}$
24. Based on the Lewis structures of the following molecules (CO ₂ , HCN, CH ₃ Cl, COCl ₂) answer
the given questions:
• The molecule which has the same hybridization of C which exists in CH ₄
is
• The molecule that has <u>only one</u> π bond is
• The molecule(s) which has (have) sp hybridization of carbon atom is (are)
• The molecule which has a bond angle of 109.5 ° is
• The longest bond formed by carbon is
25. Draw all possible resonance structures of NO ₂ , then indicate which resonance structure(s) is
(are) preferred