Chapter 4 Reactions in Aqueous Solutions

4.1 General Properties of Aqueous Solutions

- Solution a homogeneous mixture
 - Solute: the component that is dissolved
 - Solvent: the component that does the dissolving
 - Generally, the component present in the greatest quantity is considered to be the solvent. <u>Aqueous solutions</u> are those in which water is the solvent.

Electrolytes and Nonelectrolytes

- Electrolyte: substance that dissolved in water produces a solution that conducts electricity
 - Contains ions

$$NaCl(s) \xrightarrow{H_2O} Na^+(aq) + Cl^-(aq)$$

- Nonelectrolyte: substance that dissolved in water produces a solution that does not conduct electricity
 - Does not contain ions

$$C_{12}H_{22}O_{11}(s) \xrightarrow{H_2O} C_{12}H_{22}O_{11}(aq)$$

• <u>Dissociation</u> - ionic compounds separate into constituent ions when dissolved in solution

$$NaCl(s) \xrightarrow{H_2O} Na^+(aq) + Cl^-(aq)$$

• *Ionization* - formation of ions by molecular compounds when dissolved

$$HCl(g) \xrightarrow{H_2O} H^+(aq) + Cl^-(aq)$$
 $NH_3(g) + H_2O(l) \longleftrightarrow NH_4^+(aq) + OH^-(aq)$

- Strong and weak electrolytes
 - Strong Electrolyte: 100% dissociation
 - All water soluble ionic compounds, strong acids and strong bases
 - Weak electrolytes
 - Partially ionized in solution
 - Exist mostly as the molecular form in solution
 - Weak acids and weak bases

TABLE 4.1

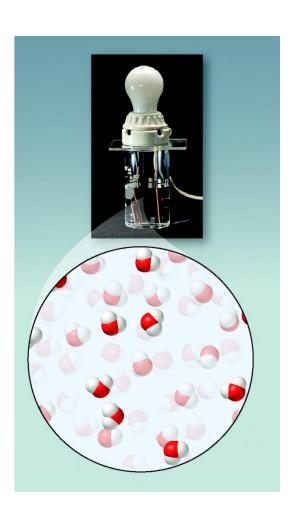
The Strong Acids

Acid	Ionization Equation
Hydrochloric acid	$HCl(aq) \longrightarrow H^{+}(aq) + Cl^{-}(aq)$
Hydrobromic acid	$HBr(aq) \longrightarrow H^{+}(aq) + Br^{-}(aq)$
Hydroiodic acid	$HI(aq) \longrightarrow H^{+}(aq) + I^{-}(aq)$
Nitric acid	$HNO_3(aq) \longrightarrow H^+(aq) + NO_3^-(aq)$
Chloric acid	$HClO_3(aq) \longrightarrow H^+(aq) + ClO_3^-(aq)$
Perchloric acid	$HClO_4(aq) \longrightarrow H^+(aq) + ClO_4^-(aq)$
Sulfuric acid*	$H_2SO_4(aq) \longrightarrow H^+(aq) + HSO_4^-(aq)$
	$HSO_4^-(aq) \rightleftharpoons H^+(aq) + SO_4^{2-}(aq)$

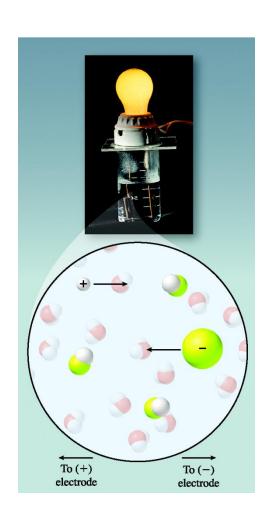
^{*}Note that although each sulfuric acid molecule has two ionizable hydrogen atoms, it only undergoes the first ionization completely, effectively producing one H^+ ion and one HSO_4^- ion per H_2SO_4 molecule. The second ionization happens only to a very small extent.

Examples of weak electrolytes

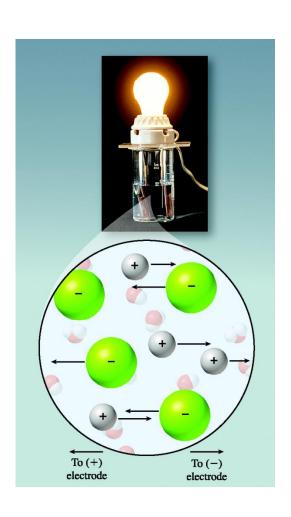
Weak acids


$$HC_2H_3O_{2(aq)} \longrightarrow C_2H_3O_2^{-}_{(aq)} + H^{+}_{(aq)}$$

Weak bases


$$NH_{3 (aq)} + H_2O_{(1)} \longrightarrow NH_4^+_{(aq)} + OH^-_{(aq)}$$

(Note: double arrows indicate a reaction that occurs in both directions - a state of dynamic equilibrium exists)


Method to Distinguish Types of Electrolytes

nonelectrolyte

weak electrolyte

strong electrolyte

Classify the following as nonelectrolyte, weak electrolyte or strong electrolyte

- NaOH

strong electrolyte

- CH₃OH

nonelectrolyte

 $-H_2CO_3$

weak electrolyte

4.2 Precipitation Reactions

- <u>Precipitation</u> (formation of a solid from two aqueous solutions) occurs when product is <u>insoluble</u>
- Produce insoluble ionic compounds
- Double replacement (or metathesis reaction)
- <u>Solubility</u> is the maximum amount of a solid that can dissolve in a given amount of solvent at a specified temperature
- Prediction based on solubility rules

Solubility Guidelines: Soluble Compounds

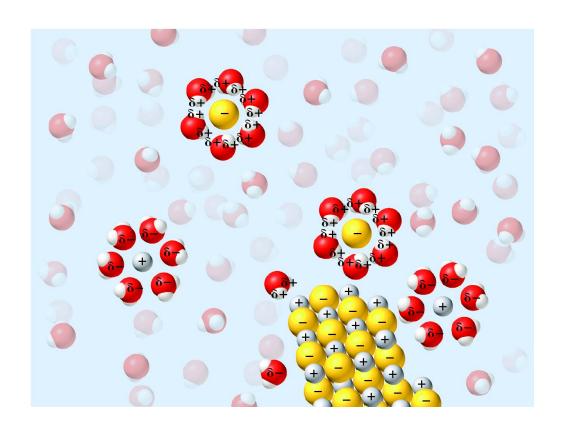
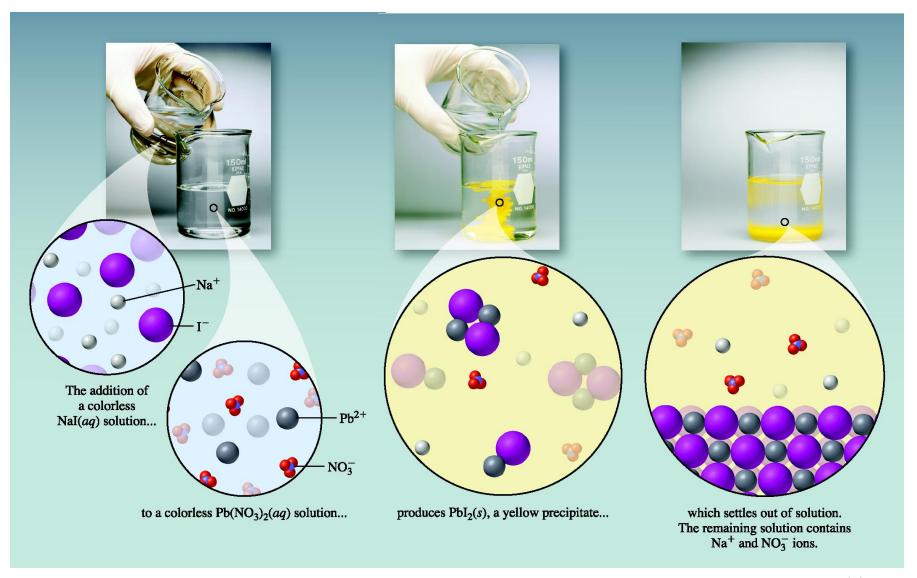

Water-Soluble Compounds	Insoluble Exceptions
Compounds containing an alkali metal cation (Li ⁺ , Na ⁺ , K ⁺ , Rb ⁺ , Cs ⁺) or the ammonium ion (NH ₄ ⁺)	
Compounds containing the nitrate ion (NO_3^-) , acetate ion $(C_2H_3O_2^-)$, or chlorate ion (ClO_3^-)	
Compounds containing the chloride ion (Cl ⁻), bromide ion (Br ⁻), or iodide ion (I ⁻)	Compounds containing Ag ⁺ , Hg ₂ ²⁺ , or Pb ²⁺
Compounds containing the sulfate ion (SO_4^{2-})	Compounds containing Ag ⁺ , Hg ₂ ²⁺ , Pb ²⁺ , Ca ²⁺ , Sr ²⁺ , or Ba ²⁺

TABLE 4.3

Solubility Guidelines: Insoluble Compounds

Water-Insoluble Compounds	Soluble Exceptions
Compounds containing the carbonate ion (CO_3^{2-}) , phosphate ion (PO_4^{3-}) , chromate ion (CrO_4^{2-}) , or sulfide ion (S^{2-})	Compounds containing Li ⁺ , Na ⁺ , K ⁺ , Rb ⁺ , Cs ⁺ , or NH ₄ ⁺
Compounds containing the hydroxide ion (OH ⁻)	Compounds containing Li ⁺ , Na ⁺ , K ⁺ , Rb ⁺ , Cs ⁺ , or Ba ²⁺


• **Hydration:** process by which water molecules remove and surround individual ions from the solid.

Identify the Precipitate

$$Pb(NO_3)_2(aq) + 2NaI(aq) \rightarrow 2NaNO_3(2q) + PbI_2(3q)$$

Mixing Solutions of Pb(NO₃)₂ and Nal

Classify the following as soluble or insoluble in water

```
-Ba(NO_3)_2
```

soluble

– AgI

insoluble

 $-Mg(OH)_2$

insoluble

• *Molecular equation*: shows all compounds represented by their chemical formulas

$$Na_2SO_4(aq) + Ba(OH)_2(aq) \longrightarrow 2NaOH(aq) + BaSO_4(s)$$

• **Ionic equation:** shows all strong electrolytes as ions and all other substances (non- electrolytes, weak electrolytes, gases) by their chemical formulas

$$Na_2SO_4(aq) \longrightarrow 2Na^+(aq) + SO_4^{2-}(aq)$$
 $Ba(OH)_2(aq) \longrightarrow Ba^{2+}(aq) + 2OH^-(aq)$
 $NaOH(aq) \longrightarrow Na^+(aq) + OH^-(aq)$

Molecular equation:

$$Na_2SO_4(aq) + Ba(OH)_2(aq) \longrightarrow 2NaOH(aq) + BaSO_4(s)$$

Ionic equation:

$$2\text{Na}^+(aq) + \text{SO}_4^{2-}(aq) + \text{Ba}^{2+}(aq) + 2\text{OH}^-(aq) \longrightarrow 2\text{Na}^+(aq) + 2\text{OH}^-(aq) + \text{BaSO}_4(s)$$

- **Net Ionic equation:** shows only the reacting species in the chemical equation
 - Eliminates *spectator ions*

$$2\text{Na}^{+}(aq) + \text{SO}_{4}^{2-}(aq) + \text{Ba}^{2+}(aq) + 2\text{OH}^{-}(aq) \longrightarrow 2\text{Na}^{+}(aq) + 2\text{OH}^{-}(aq) + \text{BaSO}_{4}(s)$$

Net ionic equation:

$$Ba^{2+}(aq) + SO_4^{2-}(aq) \longrightarrow BaSO_4(s)$$

Steps in writing a net ionic equation

- Write the balanced molecular equation.
 - Predict products by exchanging cations and anions in reactants.
- Separate strong electrolytes into ions.
- Cancel spectator ions.
- Use the remaining species to write the net ionic equation.

Aqueous solutions of silver nitrate and sodium sulfate are mixed. Write the net ionic reaction.

Step 1:

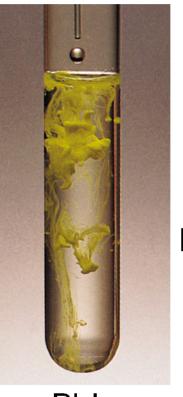
 $2AgNO_3(aq)+Na_2SO_4(aq) \rightarrow 2NaNO_3(?)+Ag_2SO_4(?)$

Step 2: Use solubility table; all nitrates are soluble but silver sulfate is insoluble

$$2Ag^{+}(aq) + 2NO_{3}^{-}(aq) + 2Na^{+}(aq) + SO_{4}^{2-}(aq)$$

$$\rightarrow$$
 2Na⁺(aq) + 2NO₃⁻(aq) + Ag₂SO₄(s)

Step 3: Cancel spectators


$$2Ag^{+}(aq) + 2NO_{3}^{-}(aq) + 2Na^{+}(aq) + SO_{4}^{2-}(aq)$$

 $\rightarrow 2Na^{+}(aq) + 2NO_{3}^{-}(aq) + Ag_{2}SO_{4}(s)$

Step 4: Write the net ionic reaction

$$2Ag^{+}(aq) + SO_4^{2-}(aq) \rightarrow Ag_2SO_4(s)$$

Precipitation Reactions

Precipitate: insoluble solid that separates from solution

 Pbl_2

$$\begin{array}{c} \text{precipitate} \\ \downarrow \\ \text{Pb}(\text{NO}_3)_2 \ (\textit{aq}) + 2 \text{Nal} \ (\textit{aq}) \longrightarrow \text{PbI}_2 \ (\textit{s}) + 2 \text{NaNO}_3 \ (\textit{aq}) \\ \hline \textit{molecular equation} \end{array}$$

$$Pb^{2+} + 2NO_3^- + 2Na^+ + 2l^- \longrightarrow Pbl_2(s) + 2Na^+ + 2NO_3^-$$
ionic equation

$$Pb^{2+} + 2l^{-} \longrightarrow Pbl_{2}(s)$$

net ionic equation

Na⁺ and NO₃⁻ are *spectator* ions

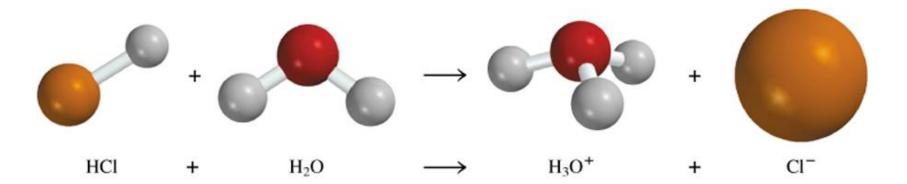
4.3 Acid-Base Reactions

- Termed neutralization reactions.
- acid + base → salt + water
- Double replacement (or metathesis) reaction
- A molecular compound (water) is a common product along with a salt (ionic compound).

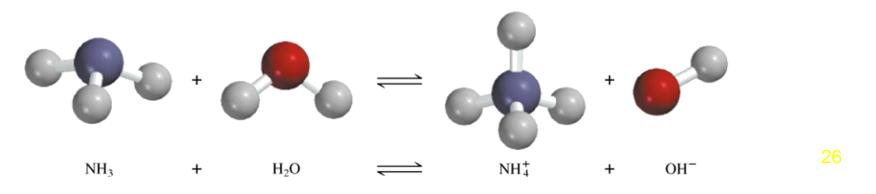
TABLE 4.4

Strong Acids and Strong Bases

Strong Acids	Strong Bases	Strong Acids	Strong Bases
HCl	LiOH	$HClO_3$	CsOH
HBr	NaOH	$HClO_4$	$Ca(OH)_2$
HI	КОН	H_2SO_4	$Sr(OH)_2$
HNO_3	RbOH		$Ba(OH)_2$

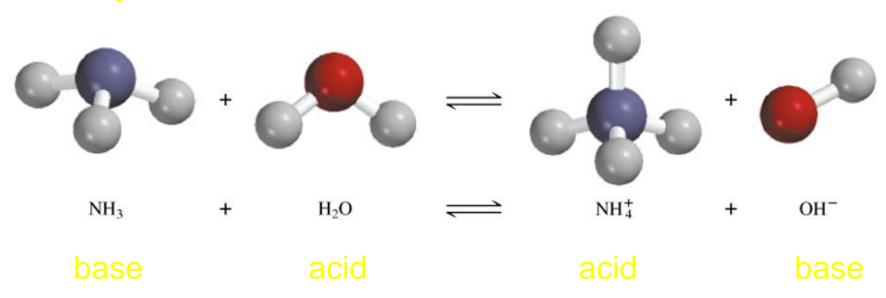

All the other acids and bases are weak electrolytes (important for net ionic equations).

- Definitions of acids and bases
 - -Arrhenius acid produces H⁺ in solution
 - —Arrhenius base produces OH⁻ in solution


- -More inclusive definitions:
 - Brønsted acid proton donor
 - Brønsted base proton acceptor

Acid and Base

Arrhenius Acid is a substance that produces H⁺ (H₃O⁺) in water



Arrhenius Base is a substance that produces OH in water

Continue Acid Base

Brønsted acid is a proton donorBrønsted base is a proton acceptorA

Examples of a weak base and weak acid

Hydrofluoric acid with water:

$$+ \qquad \Longrightarrow \qquad \begin{bmatrix} & & & \\ & & & \\ & & & \end{bmatrix}^{+} + \qquad \longleftrightarrow$$

$$HF(aq) + H_2O(l) \iff H_3O^{+}(aq) + F^{-}(aq)$$

Types of acids

Monoprotic: one ionizable hydrogen

$$HCI + H_2O \rightarrow H_3O^+ + CI^-$$

Diprotic: two ionizable hydrogens

$$H_2SO_4 + H_2O \rightarrow H_3O^+ + HSO_4^-$$

 $HSO_4^- + H_2O \rightarrow H_3O^+ + SO_4^{2-}$

— <u>Triprotic:</u> three ionizable hydrogens

$$H_3PO_4 + H_2O \rightarrow H_3O^+ + H_2PO_4^-$$

 $H_2PO_4^- + H_2O \rightarrow H_3O^+ + HPO_4^{2-}$
 $HPO_4^{2-} + H_2O \rightarrow H_3O^+ + PO_4^{3-}$

 Polyprotic: generic term meaning more than one ionizable hydrogen

- Types of bases
 - Monobasic: One OH⁻ group

$$KOH \rightarrow K^+ + OH^-$$

Dibasic: Two OH⁻ groups

$$Ba(OH)_2 \rightarrow Ba^{2+} + 2OH^{-}$$

Acid-Base Neutralization

• Neutralization: Reaction between an acid and a base

Molecular equation:

$$HCI(aq) + NaOH(aq) \rightarrow NaCI(aq) + H2O(I)$$

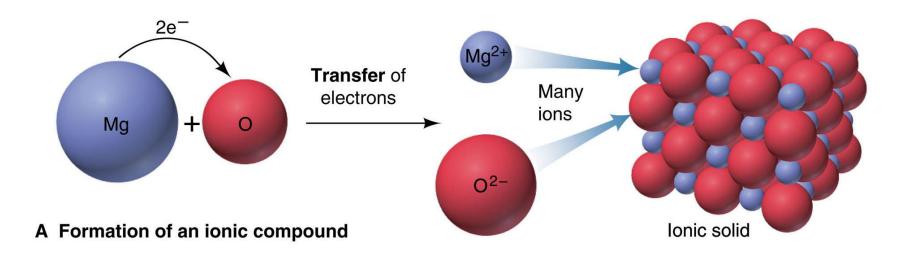
Ionic equation:

$$H^+(aq) + \mathcal{C}I^-(aq) + \mathcal{M}a^+(aq) + OH^-(aq)$$

 $\rightarrow \mathcal{M}a^+(aq) + \mathcal{C}I^-(aq) + \mathcal{H}_2O(I)$

Net ionic equation:

$$H^+(aq) + OH^-(aq) \rightarrow H_2O(I)$$


Solutions of acetic acid and lithium hydroxide are mixed. Write the net ionic reaction.

$$HC_2H_3O_2$$
 (aq) + OH (aq) \longrightarrow $C_2H_3O_2$ (aq) + $H_2O(I)$

4.4 Oxidation-Reduction Reactions

- Often called "redox" reactions
- Electrons are transferred between the reactants
 - One substance is oxidized, loses electrons
 - Reducing agent
 - Another substance is reduced, gains electrons
 - Oxidizing agent
- Oxidation numbers change during the reaction

Oxidation-Reduction Reaction

electron transfer reactions)

$$2Mg_{(s)} + O_{2(g)} \longrightarrow 2MgO_{(s)}$$

Oxidation-Reduction Reaction

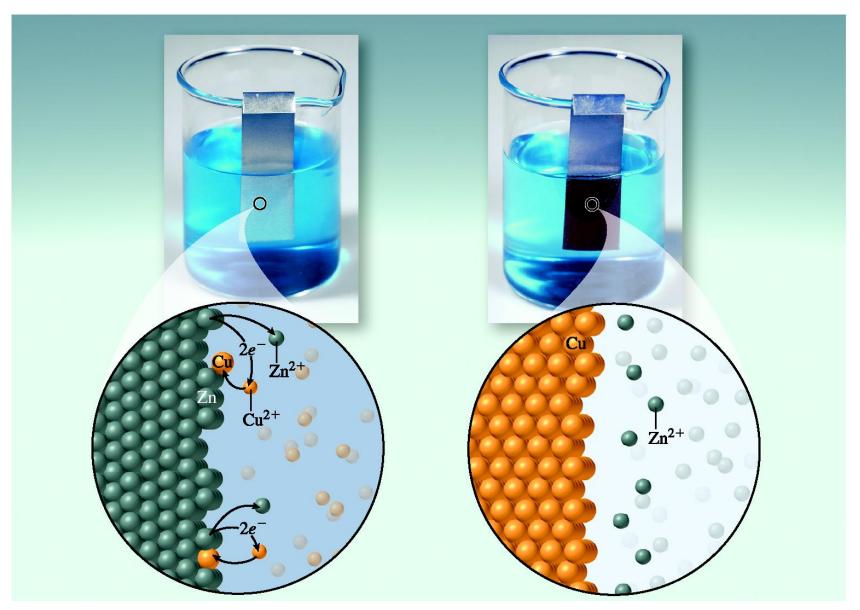
$$2Mg(s) + O_2(g) \longrightarrow 2MgO(s)$$

$$2Mg \longrightarrow 2Mg^{2+} + 4e^{-}$$

Oxidation half-reaction (lose e⁻)

$$O_2 + 4e^- \longrightarrow 2O^{2-}$$

Reduction half-reaction (gain e⁻)


-Example

$$Zn(s) + CuSO_4(aq) \rightarrow ZnSO_4(aq) + Cu(s)$$

$$Zn(s) + Cu^{2+}(aq) \rightarrow Zn^{2+}(aq) + Cu(s)$$

- Zinc is losing 2 electrons and oxidized.
 - Reducing agent
 - $Zn(s) \rightarrow Zn^{2+}(aq) + 2e^{-}$
- Copper ions are gaining the 2 electrons.
 - Oxidizing agent
 - $Cu^{2+}(aq) + 2e^- \rightarrow Cu(s)$

Reaction of Cu and Zn²⁺ ions

Assigning The Oxidation State

- 1. Oxidation state of an atom in an element = $\mathbf{0}$ eg O_2 , Cl_2 , H_2 , Na,....etc
- 2. Oxidation state of monatomic element ions = **charge** e.g. Cl⁻, Na⁺, S⁻²,.....etc
- 3. Oxygen = -2 in covalent compounds (except in <u>peroxides</u> where it = -1)
- 4. H = +1 in covalent compounds
- 5. Fluorine = -1 in compounds

What is the oxidation numbers of the elements in the IF_7 ?

$$IF_7$$
 $F = -1$
 $7x(-1) + ? = 0$
 $I = +7$

Oxidation Number

- 1. For Group 1A(1): O.N. = +1 in all compounds
- 2. For Group 2A(2): O.N. = +2 in all compounds
- 3. For Group 7A(17): O.N. = -1 in combination with metals, nonmetals (except O), and other halogens lower in the group

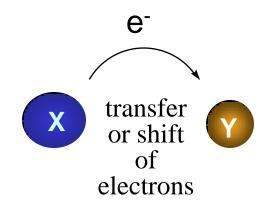
What is the oxidation number of the each element in the following Compounds?

ZnCl₂ for zinc is +2 and that for chloride is -1

SO₃ Each oxygen is an oxide with -2. sulfur is +6

HNO₃ H is +1 and each oxygen is -2. the N is +5

Assign oxidation numbers for all elements in each species


 $MgBr_2$

Mg
$$+2$$
, Br -1

CIO₂⁻

$$CI + 3$$
, $O - 2$

Electron Transfer Terminology

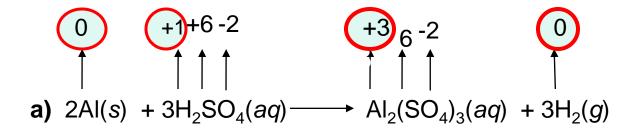
X loses electron(s)

X is oxidized

X is the reducing agent

X increases its oxidation number

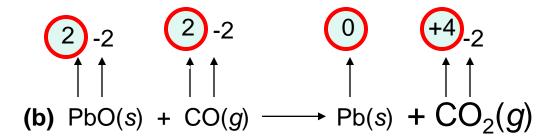
Y gains electron(s)


Y is reduced

Y is the oxidizing agent

Y decreases its oxidation number

Oxidation Reduction Reaction


Identify the <u>oxidizing agent</u> and <u>reducing agent</u> in each of the following

The oxidation number of Al increases; it is oxidized; it is the reducing agent.

The oxidation number of H decreases; it is reduced; H_2SO_4 is the oxidizing agent.

Continue

The oxidation number of C increases; it is oxidized; CO is the reducing agent.

The oxidation number of Pb decreases; it is reduced; PbO is the oxidizing agent.

Displacement reactions

 A common reaction: active metal replaces (displaces) a metal ion from a solution

$$Mg(s) + CuCl_2(aq) \rightarrow Cu(s) + MgCl_2(aq)$$

The activity series of metals is useful in order to predict the outcome of the reaction.

of oxidation	
of ox	
ease	
ncreasing ease	
Ξ	

Element	Oxidation Half-Reaction
Lithium	$Li \longrightarrow Li^+ + e^-$
Potassium	$K \longrightarrow K^+ + e^-$
Barium	$Ba \longrightarrow Ba^{2+} + 2e^{-}$
Calcium	$Ca \longrightarrow Ca^{2+} + 2e^{-}$
Sodium	$Na \longrightarrow Na^+ + e^-$
Magnesium	$Mg \longrightarrow Mg^{2+} + 2e^{-}$
Aluminum	$Al \longrightarrow Al^{3+} + 3e^{-}$
Manganese	$Mn \longrightarrow Mn^{2+} + 2e^{-}$
Zinc	$Zn \longrightarrow Zn^{2+} + 2e^{-}$
Chromium	$Cr \longrightarrow Cr^{3+} + 3e^{-}$
Iron	$Fe \longrightarrow Fe^{2+} + 2e^{-}$
Cadmium	$Cd \longrightarrow Cd^{2+} + 2e^{-}$
Cobalt	$Co \longrightarrow Co^{2+} + 2e^{-}$
Nickel	$Ni \longrightarrow Ni^{2+} + 2e^{-}$
Tin	$\operatorname{Sn} \longrightarrow \operatorname{Sn}^{2+} + 2e^{-}$
Lead	$Pb \longrightarrow Pb^{2+} + 2e^{-}$
Hydrogen	$H_2 \longrightarrow 2H^+ + 2e^-$
Copper	$Cu \longrightarrow Cu^{2+} + 2e^{-}$
Silver	$Ag \longrightarrow Ag^+ + e^-$
Mercury	$Hg \longrightarrow Hg^{2+} + 2e^{-}$
Platinum	$Pt \longrightarrow Pt^{2+} + 2e^{-}$
Gold	$Au \longrightarrow Au^{3+} + 3e^{-}$

Balancing redox reactions

- Electrons (charge) must be balanced as well as number and types of atoms
- -Consider this net ionic reaction:

$$AI(s) + Ni^{2+}(aq) \rightarrow AI^{3+}(aq) + Ni(s)$$

The reaction appears balanced as far as number and type of atoms are concerned,
 but look closely at the charge on each side. A

$$Al(s) + Ni^{2+}(aq) \rightarrow Al^{3+}(aq) + Ni(s)$$

Divide reaction into two half-reactions

$$Al(s) \rightarrow Al^{3+}(aq) + 3e^{-}$$

 $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$

 Multiply by a common factor to equalize electrons (the number of electrons lost must equal number of electrons gained)

2 [Al(s)
$$\rightarrow$$
 Al³⁺(aq) + 3e⁻]
3 [Ni²⁺(aq) + 2e⁻ \rightarrow Ni(s)]

Cancel electrons and write balanced net ionic reaction

$$2AI(s) \rightarrow 2AI^{3+}(aq) + 6e^{-}$$

 $3Ni^{2+}(aq) + 6e^{-} \rightarrow 3Ni(s)$

$$2AI(s) + 3Ni^{2+}(aq) \rightarrow 2AI^{3+}(aq) + 3Ni(s)$$

Predict whether each of the following will occur. For the reactions that do occur, write a balanced net ionic reaction for each.

 Copper metal is placed into a solution of silver nitrate

Cu (s) +
$$2 \text{ Ag}^+$$
 (aq) - Cu²⁺ (aq) + $2 \text{ Ag}(s)$

 A gold ring is accidentally dropped into a solution of hydrochloric acid

> No reaction occurs, gold is below hydrogen on the activity series.

Combination Reactions

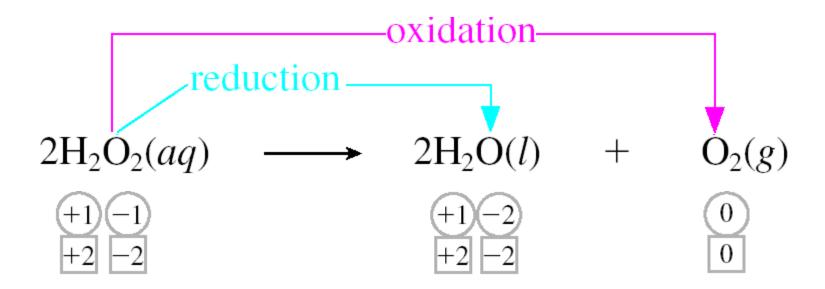
- Many combination reactions may also be classified as redox reactions
- Consider:

Hydrogen gas reacts with oxygen gas

$$2H_2(g) + O_2(g) \rightarrow 2H_2O(I)$$

Identify the substance oxidized and the substance reduced.

Decomposition reactions


- Many decomposition reactions may also be classified as redox reactions
- -Consider:

Potassium chlorate is strongly heated

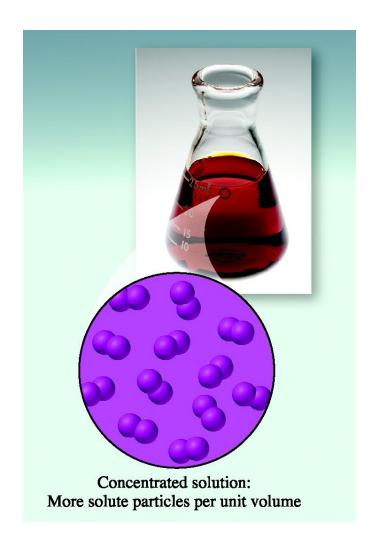
$$2KCIO_3(s) \rightarrow 2KCI(s) + 3O_2(g)$$

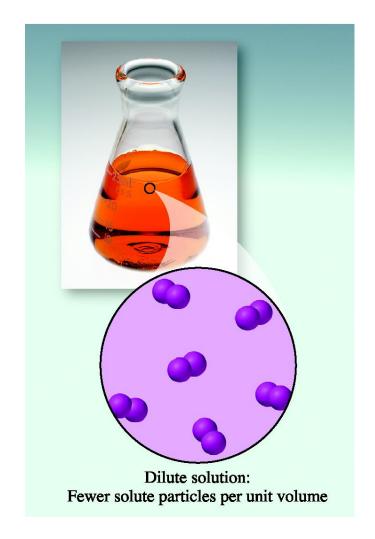
Identify substances oxidized and reduced.

- **Disproportionation** reactions
 - One element undergoes both oxidation and reduction
 - -Consider:

- *Combustion* reactions
 - Common example, hydrocarbon fuel reacts with oxygen to produce carbon dioxide and water
 - -Consider:

$$CH_4(g)$$
 + $2O_2(g)$ \longrightarrow $CO_2(g)$ + $2H_2O(l)$
 $-4 + 1$ 0 $+4 - 2$ $+1 - 2$ $+2 - 2$


Oxidation Numbers on the Periodic Table


1 1A 1 H +1 -1																	18 8A 2 He
	2 2A											13 3A	14 4A	15 5A	16 6A	17 7A	
3 Li +1	4 Be +2	(most common in red)										5 B +3	6 C +4 +2 -4	7 N +5 +4 +3 +2 +1 -3	8 O +2 $-\frac{1}{2}$ -1 -2	9 F -1	10 Ne
11 Na +1	12 Mg +2	3 3B	4 4B	5 5B	6 6B	7 7B	8	9 —8B—	10	11 1B	12 2B	13 Al +3	14 Si +4 -4	15 P +5 +3 -3	16 S +6 +4 +2 -2	17 Cl +7 +6 +5 +4 +3 +1	18 Ar
19 K +1	20 Ca +2	21 Sc +3	22 Ti +4 +3 +2	23 V +5 +4 +3 +2	24 Cr +6 +5 +4 +3 +2	25 Mn +7 +6 +4 +3 +2	26 Fe +3 +2	27 Co +3 +2	28 Ni +2	29 Cu +2 +1	30 Zn +2	31 Ga +3	32 Ge +4 -4	33 As +5 +3 -3	34 Se +6 +4 -2	35 Br +5 +3 +1 -1	36 Kr +4 +2
37 Rb +1	38 Sr +2	39 Y +	40 Zr +4	41 Nb +5 +4	42 Mo +6 +4 +3	43 Tc +7 +6 +4	44 Ru +8 +6 +4 +3	45 Rh +4 +3 +2	46 Pd +4 +2	47 Ag +1	48 Cd +2	49 In +3	50 Sn +4 +2	51 Sb +5 +3 -3	52 Te +6 +4 -2	53 I +7 +5 +1 -1	54 Xe +6 +4 +2
55 Cs +1	56 Ba +2	57 La +3	72 Hf +4	73 Ta +5	74 W +6 +4	75 Re +7 +6 +4	76 Os +8 +4	77 Ir +4 +3	78 Pt +4 +2	79 Au +3 +1	80 Hg +2 +1	81 Tl +3 +1	82 Pb +4 +2	83 Bi +5 +3	84 Po +2	85 At -1	86 Rn

4.5 Concentration of Solutions

- *Concentration* is the amount of solute dissolved in a given amount of solvent.
- Qualitative expressions of concentration
 - Concentrated higher ratio of solute to solvent
 - –Dilute smaller ratio of solute to solvent

Comparison of a Concentrated and Dilute Solution

- Quantitative concentration term
 - Molarity is the ratio of moles solute per <u>liter</u> of solution

$$molarity = \frac{moles \ solute}{liters \ solution}$$

- -Symbols: M or []
- Different forms of molarity equation

$$M = \frac{mol}{L}$$
 $L = \frac{mol}{M}$ $mol = M \times L$

Example

Calculate the molarity of a solution prepared by dissolving 11.5 g of solid NaOH in 1.5 L of water

Moles of NaOH =
$$\frac{\text{Mass (g)}}{\text{Molar mass (g/mol)}} = \frac{11.5 \text{ g}}{40 \text{ g/mol}} = 0.287 \text{ mole}$$

$$M = molarity = \frac{moles \text{ of solute}}{\text{liters of solution}} = \frac{0.287 \text{ mole}}{1.5 \text{ L}}$$

 $0.19 \, \mathrm{M}$

How many milliliters of 3.50 *M* NaOH can be prepared from 75.00 grams of the solid?

How many milliliters of 3.50 *M* NaOH can be prepared from 75.00 grams of the solid?

Moles of NaOH =
$$\frac{75.00 \text{ g}}{40 \text{ g/mole}}$$
 = 1.88 mole

Volume of NaOH (L) =
$$\frac{\text{Moles}}{\text{Molarity}} = \frac{1.88 \text{ m}}{3.5 \text{ M}} = 0.537 \text{ L}$$

= 537 m

• **Dilution**

-Process of preparing a less concentrated solution from a more concentrated one.

moles of solute before dilution = moles of solute after dilution

$$M_{\rm c} \times L_{\rm c} = M_{\rm d} \times L_{\rm d}$$

For the next experiment the class will need 250. mL of 0.10 *M* CuCl₂. There is a bottle of 2.0 *M* CuCl₂. Describe how to prepare this solution. How much of the 2.0 *M* solution do we need?

Concentrated: 2.0 M use ? mL (L_d)

Dilute: 250. mL of 0.10 M

$$M_{\rm c}L_{\rm c}=M_{\rm d}L_{\rm d}$$

$$(2.0 M) (L_c) = (0.10 M) (250.mL)$$

 $L_c = 12.5 mL$

12.5 mL of the concentrated solution are needed; add enough distilled water to prepare 250. mL of the solution.

Solution Stoichiometry

- -Soluble ionic compounds dissociate completely in solution.
- -Using mole ratios we can calculate the concentration of all species in solution.

NaCl dissociates into Na⁺ and Cl⁻

Na₂SO₄ dissociates into 2Na⁺ and SO₄²⁻

AICI₃ dissociates into AI³⁺ and 3CI⁻

Find the concentration of all species in a 0.25 *M* solution of MgCl₂

$$MgCl_2 \rightarrow Mg^{2+} + 2Cl^{-}$$

Given: $MgCl_2 = 0.25 M$

$$[Mg^{2+}] = 0.25 M (1:1 ratio)$$

 $[Cl^{-}] = 0.50 M (1:2 ratio)$

Using the square bracket notation, express the molar concentration for all species in the following solutions

$$0.42 M Ba(OH)_2$$

 $[Ba^{2+}] = 0.42 M (1:1 ratio)$
 $[OH^{-}] = 0.84 M (2:1 ratio)$

1.2
$$M \text{ NH}_4\text{CI}$$

 $[\text{NH}_4^+] = 1.2 \ M (1:1 \text{ ratio})$
 $[\text{CI}^-] = 1.2 \ M (1:1 \text{ ratio})$

4.6 Aqueous Reactions and Chemical Analysis

- Types of quantitative analysis
 - -Gravimetric analysis (mass analysis)
 - Example: precipitation reaction
 - Volumetric analysis (volume analysis)
 - Example: titration

Gravimetric Analysis

- One form: isolation of a precipitate
- Typical steps:
 - Determine mass of unknown solid
 - Dissolve unknown in water
 - Combine with excess amount of known substance to form a precipitate (excess drives reaction to completion)
 - Filter, dry and weigh the precipitate
 - Use formula and mass of ppt to find % of ion in unknown solid

A 0.825 g sample of an ionic compound containing chloride ions and an unknown metal is dissolved in water and treated with excess <u>silver nitrate</u>. If 1.725 g of AgCl precipitate forms, what is the percent by mass of Cl in the original sample?

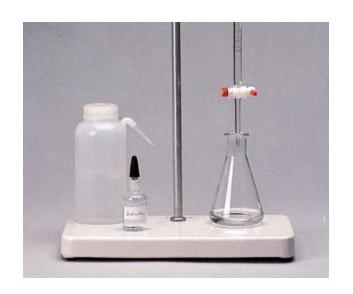
$$Ag^+ + CI^- \rightarrow AgCI_{(s)}$$

Moles of AgCI =
$$\frac{1.725 \text{ g}}{143.32 \text{ g/mol}} = 0.012 \text{ mole} = \text{mole of CI}^{-1}$$

Mass of $Cl^- = 0.012 \text{ mol} \times 35.5 \text{ g/mol} = 0.43 \text{ g of } Cl^-$

$$%CI = \frac{0.43 \text{ g}}{0.825 \text{ g}} \times 100\% = 52 \%$$

Volumetric analysis


- Commonly accomplished by titration
 - Addition of a solution of known concentration (standard solution) to another solution of unknown concentration.
- Standardization is the determination of the exact concentration of a solution.
- Equivalence point represents completion of the reaction.
- Endpoint is where the titration is stopped.
- An *indicator* is used to signal the endpoint.

Acid Base Titration

Titration is analytical technique in which one can calculate the concentration of a solute in a solution.

Equivalent point – the point at which the reaction is complete

Indicator – substance that changes color at (or near) the equivalent point End Point

Slowly add base to unknown acid UNTIL

the indicator changes color

Titration

Example

50 ml of HCl solution has been titrated with 0.1524 M NaOH solution. At the end point, 33.32 ml of NaOH was used in the titration. What is the concentration of the HCl solution?

WRITE THE BALANCED CHEMICAL EQUATION!

$$NaOH_{(aq)} + HCl_{(aq)} \longrightarrow NaCl_{(aq)} + H_2O_{(l)}$$

At the End Point

Moles of NaOH = Moles of HCI $M1 \times V1 = M2 \times V2$ $0.1524 \times 0.03332 = M2 \times 0.050$

M2 = 0.1016 Molar

Example

What volume of a 1.420 M NaOH solution is Required to titrate 25.00 mL of a 4.50 M H₂SO₄ solution?

WRITE THE BALANCED CHEMICAL EQUATION!

$$H_2SO_4 + 2NaOH \longrightarrow 2H_2O + Na_2SO_4$$

At the equivalent Point

Moles of NaOH = 2 x Moles of
$$H_2SO_4$$

M1 x V1 = 2 x M2 x V2
1.42 x V1 = 2 x 4.5 x 25.00
V1 = 158 ml

Key Points

- Electrolytes (strong, weak, and non)
- Precipitation reactions
 - Solubility rules
- Molecular, ionic, and net ionic reactions
- Acid-base neutralization reactions
- Oxidation-reduction reactions

Key Points

- Balancing redox reactions by the half reaction method
- Various types: decomposition, combination
- Molarity
- Solution stoichiometry
 - Gravimetric analysis
 - Volumetric analysis