

Department of Mathematical Sciences Dr. Muhammad Islam Mustafa MATH 221 Major Exam 1

Student Name:	Student ID #:
Section #:	Time allowed: 75 minutes

<u>Q1.</u> Consider the function $f(x) = e^x + \sin x$.

a) Find the third Taylor polynomial $P_3(x)$ for the function f(x) about $x_0 = 0$.

b) Use $P_3(0.5)$ to approximate f(0.5). Find an upper bound for the absolute error $|f(0.5) - P_3(0.5)|$ using the error formula.

<u>Q2.</u> Consider the equation $x^3 - x - 2 = 0$.

a) Use the Intermediate Value Theorem to show that this equation has a solution in the interval [1, 2].

b) Use the Bisection method on the interval [1, 2] to find p_3 .

c) Find the number of iterations required in using the Bisection method to approximate the solution of this equation accurate to within 10^{-3} .

<u>Q3.</u> a) Show that the fixed point of the function $g(x) = \sqrt[3]{x+2}$ is a solution for the equation $x^3 - x - 2 = 0$.

b) Use the Fixed Point Theorem to prove that g(x) has a unique fixed point on [1, 2].

c) Begin with $p_0 = 1.5$ and find an approximation to this fixed point accurate to within 10^{-3} .

<u>Q4.</u> Use Newton's method, with $p_0 = 1.5$, to approximate the solution of the equation $x^3 - x - 2 = 0$ accurate to within 10^{-3} .

<u>O5.</u> Find an approximation to $\sqrt{5}$ correct to within 10^{-2} using the method of false position. (Hint: consider the function $f(x) = x^2 - 5$ on the interval [2, 3])
