

Prince Sultan University

Department of Mathematical Sciences

Major II Exam

Semester II, 2008 SPRING (072) Tuesday, 29 April 2008

Α

MATH 101 – Finite Mathematics

:

:_____

Time Allowed : 2 hours Maximum Points: 100 points

Name of the student:

ID number

Section #

Instructor's Name: _____

- 1. You may use a scientific calculator that does not have programming or graphing capabilities.
- 2. You may NOT borrow a calculator from anyone.
- 3. You may NOT use notes or any textbook.
- 4. There should be NO talking during the examination.
- 5. Your exam will be taken immediately if your mobile phone is seen or heard
- 6. Looking around or making an attempt to cheat will result in your exam being cancelled
- 7. Provide an organized complete solution for each Question.
- 8. This examination has a total of 8 pages and 12 problems. Make sure your paper has all these problems.

Question	Maximum score	Your Score
Q.1	5	
Q.2	12	
Q.3	6	
Q.4	6	
Q.5	6	
Q.6	6	
Q.7	6	
Q.8	12	
Q.9	7	
Q.10	12	
Q.11	12	
Q.12	10	
Total	100	

<u>Q.1(8 points)</u> Write True(T) or False(F) for each of the following statements.

- 1) Investing at 8% compounded monthly is better than investing at 8% compounded annually?
- 2) \$1,000 invested at 7% compounded annually for 1 year produces more interest than investing \$1,000 at 7% simple interest for 1 year.
- ——— 3) All Linear Programming problems have solutions.
 - 4) In a linear programming problem there may be more than one point that maximizes or minimizes the objective function.
 - 5) If a linear programming problem has a solution, it is located at the center of the set of feasible points.

<u>Q.2(12 points)</u> <u>Circle the correct answer.</u>

	P	x_1	x_2	x_3	S_1	s_2	<i>s</i> ₃	RHS		
	[0	2	0	4	1	5	0	30		
	0	1	1	2	0	3	0	20		
	0	3	0	-1	0	-2	1	5		
	1	-6	0	-8	0	$\frac{1}{2}$	0	1200		
(a)	row	1 , co	l. 2			(b)	row	3 , col.	(c) row 1 , col. 4	(d) row 2 , col. 4

1) The pivot element in the following tableau is located in:

2) The solution of the LP problem that has the following simplex tableau is:

	Р	x_1	x_2	<i>x</i> ₃	S_1	S_2	<i>s</i> ₃	RHS	
	0	-5	0	1	3	4	0	12]	
	0	0	1	0	$^{-4}$	0	0	27	
	0	-5	0	0	3	2	1	11	
	1	5	0	0	2	2	0	22	
(a)	$P_{\rm max.}$	= 22	, x ₁	=0,	$x_{2} =$	27 , x	$x_{3} =$	12	(b) $P_{\text{max.}} = 22$, $x_1 = 11$, $x_2 = 12$, $x_3 = 27$
(c)	$P_{\rm max.}$	= 22	, x ₁	=0,	$x_2 = 0$	0 , x ₃	=12	2	(d) $P_{\text{max.}} = 22$, $x_1 = 12$, $x_2 = 27$, $x_3 = 11$

3) The *basic variables* in the following simplex tableau *are:*

	Р	x_1	x_2	S_1	s_2	RHS		
[0	1	3	0	5	14		
	0	0	4	1	-3	10		
	_1	0	3	0	4	26		
(a) <i>x</i>	x_1, x_2	, and	P		(b) $x_2, s_2,$ and P	(c) $x_1, s_1, and s_2$	(d) $x_1, s_1, and P$

4) The following point is in the solution set of the given system of inequalities.

$$\begin{cases} x+2y \le 8\\ 2x-y > 4 \end{cases}$$
(a) (2,6) (b) (8,3) (c) (0,-4) (d) (4,-3)

5) Which region represents the solution region of the following system of linear inequalities?

Q.3(6 points) An investment company pays 5% interest compounded semiannually. You want to have \$16,000 in the future, how much should you deposit now to have that amount 5 years from now?

<u>O.4(6 points)</u> In order to accumulate enough money for a down payment on a house, a couple deposits \$400 per month into an account paying 6% compounded monthly. How much money will be in the account in 8 years?

Q.5(6 points) If 20,000 *SR* are invested in an account that earns 7% simple interest per year. How much is in the account after 20 months?

<u>Q.6(6 points)</u> How long will it take \$4,000 to grow to \$10,000 if it is invested at 7% compounded continuously? (Round your answer to the nearest year)

Q.7(6 points) If you want to retire with 500,000 SR in 30 years, how much should you invest each month into an account that pays 10% compounded monthly?

 $5x + y \ge 40$ $x + 3y \ge 36$ $x \ge 0, y \ge 0$

- a. Graph the system.
- b. Is the graph bounded or unbounded.
- c. List the corner points of the graph.
- d. Use the information above to find the maximum and minimum values of the objective function: z = 5x + 12y

Q.9(7 points) Write the <u>Dual Problem</u> for the following minimum problem (DO NOT SOLVE) Minimize $C = 18x_1 + 43x_2$ Subject to the constraints: $2x_1 + 5x_2 \ge 24$ $3x_1 + 7x_2 \ge 34$ $x_1 \ge 0$, $x_2 \ge 0$

<u>Q.10(12 points)</u>

Use the simplex method to maximize $P = 2x_1 + 3x_2 + 4x_3$ subject to the constraints: $x_1 + x_3 \le 8$ $x_2 + x_3 \le 6$ $x_1 \ge 0$, $x_2 \ge 0$, $x_3 \ge 0$

(Give the complete solution)

<u>Q.11(12 points)</u>

Use the simplex method to minimize $C = 6x_1 + 3x_2$ subject to the constraints:

 $x_{1} + x_{2} \ge 4$ $3x_{1} + 4x_{2} \ge 12$ $x_{1} \ge 0 , x_{2} \ge 0$

(Give the complete solution)

Α

<u>Q.12(10 points)</u>

A company makes two models of desks: a student model and a secretary model. Each student model requires 2 hours of woodworking and 4 hours of finishing, while the secretary model requires 4 hours of woodworking and 6 hours of finishing. The company has only a total of 200 hours available for woodworking and a total of 360 hours available for finishing. The company makes a \$40 profit on each student model and a \$50 profit on each secretary model it sells. How many desks of each model should the company make to <u>maximize its profit</u>. (Write the system of linear inequalities and the objective function and then solve)

(Use any appropriate method)