

Prince Sultan University MATH 221 Major Test I Semester I, Term 161 Thursday, November 10, 2016 Time Allowed: <u>90 minutes</u>

Student Name: _____

Student ID #: _____

Important Instructions:

- 1. You may use a scientific calculator that does not have programming or graphing capabilities.
- 2. You may NOT borrow a calculator from anyone.
- 3. You may NOT use notes or any textbook.
- 4. There should be NO talking during the examination.
- 5. Your exam will be taken immediately if your mobile phone is seen or heard
- 6. Looking around or making an attempt to cheat will result in your exam being cancelled
- 7. This examination has 6 problems, some with several parts. Make sure your paper has all these problems.

Question #	Max points	Student's Points
Q1	10	
Q2	8	
Q3	12	
Q4	10	
Q5	8	
Q6	12	
Total	60	

Q-1(10 points) Consider the mathematical problem P defined by z = x + y. Defining the approximation by

 $\Delta x = x - \hat{x}$ and $\Delta y = y - \hat{y}$, show that the problem is well conditioned with respect to the absolute error κ_A .

Q-2(8 Points) Let α_1 and α_2 be two fixed point of the quadratic function $f(x) = 0.5x^2 - 1.5x + 2$

- a) Find the values of both fixed points
- b) For which point the fixed point method will converge

 $\textbf{Q-3}\ (\textbf{12 Points})\ \text{What is the order of convergence of the iteration}$

$$x_{n+1} = \frac{x_n(x_n^2 + 3b)}{3x_n^2 + b}$$

as it converges to a fixed point $\alpha = \sqrt{b}$?

Q-4 (10 Points) Show that the iterative procedure for evaluating the reciprocal of a number N using secant method is

$$x_{n+1} = x_n + (1 - Nx_n)x_{n-1}$$
, $n = 1, 2, \cdots$

Q-5(8 points) Let $f(x) = -x^3 - \cos x$, and $p_0 = -1$. Use Newton's method to find p_1 and p_2

Q-6 (12 Points) Find an approximation to a zero of $P(x) = 2x^4 - 3x^2 + 3x - 4$ using Newton's method with $x_0 = -2$ and Horner's method to find P(-2) and P'(-2).