

Prince Sultan University MATH 221 Major Test II Semester I, Term 161 Wednesday, December 21, 2016 Time Allowed: **90** minutes

Student Name: _____

Student ID #: _____

Important Instructions:

- 1. You may use a scientific calculator that does not have programming or graphing capabilities.
- 2. You may NOT borrow a calculator from anyone.
- 3. You may NOT use notes or any textbook.
- 4. There should be NO talking during the examination.
- 5. Your exam will be taken immediately if your mobile phone is seen or heard
- 6. Looking around or making an attempt to cheat will result in your exam being cancelled
- 7. This examination has 6 problems, some with several parts. Make sure your paper has all these problems.

Question #	Max points	Student's Points
Q1	10	
Q2	10	
Q3	10	
Q4	8	
Q5	12	
Q6	10	
Total	60	

Q-1(10 points) Suppose that $f \in C^n[a,b]$ and $x_0, x_1, x_2, ..., x_n$ are distinct numbers in [a,b]. Then for some $\eta(x)$ in the interval (a,b), show that

$$f[x_0, x_1, ..., x_n] = \frac{f^{(n)}(\eta(x))}{n!}$$

Q-2(10 Points) Show that the following function represents a cubic spline.

$$s(x) = \begin{cases} x & -1 \le x \le 0\\ x + x^3 & 0 \le x \le 1\\ 1 - 2x + 3x^3 & 1 \le x \le 4 \end{cases}$$

Q-3 (10 Points) Consider the points $x_0 = 0$, $x_1 = 0.4$, and $x_2 = 0.7$ and for a function f(x), the divided differences are $f[x_2] = 6$, $f[x_1, x_2] = 10$ and $f[x_0, x_1, x_2] = \frac{50}{7}$. Use this information and construct the complete divided difference table for the given data points.

Q-4(8 points) Show that the local truncation error of the Trapoziodal rule to estimate definite integral $\int_{a}^{b} f(x)dx$ is $E_{T_1}(f) = -\frac{h^3}{12}f''(\eta(x))$, where $\eta(x) \in (a,b)$.

Q-5 (12 Points)

a) Let $f(x) = x^2 Cos(x)$. Compute the approximate value of f''(1), taking h=0.1 and using central difference formula..

b) Compute the error bound for your approximation.

Q-6 (10 Points) Evaluate the integral $\int_{0}^{1} e^{4x} dx$ using Simpson's 1/3 Rule with n=2 and n=4.