Prince Sultan University

MATH 221 Final Exam Semester I, Term 161 Tuesday, January 24, 2017

Instructor: Dr. Muhammad Dure Ahmad

Time Allowed: **<u>3 hours</u>**

Student ID #: _____

Important Instructions:

- 1. You may use a scientific calculator that does not have programming or graphing capabilities.
- 2. You may NOT borrow a calculator from anyone.
- 3. You may NOT use notes or any textbook.
- 4. There should be NO talking during the examination.
- 5. Your exam will be taken immediately if your mobile phone is seen or heard
- 6. Looking around or making an attempt to cheat will result in your exam being cancelled
- 7. This examination has 9 problems, some with several parts. Make sure your paper has all these problems.

Question #	Max points	Student's Points
Q1	6	
Q2	8	
Q3	8	
Q4	6	
Q5	12	
Q6	12	
Q7	10	
Q8	8	
Q9	10	
Total	80	

Total/40

Q-1(6 points) Use the *fixed point theorem* to check which of the following sequence will converge faster to $\sqrt{5}$ and why?

a)
$$x_{n+1} = x_n + 1 - \frac{x_n^2}{5}$$

b) $x_{n+1} = \frac{1}{3} \left[3x_n + 1 - \frac{x_n^2}{5} \right]$

Q-2(8 Points) Use the <u>Secant Method</u> to find the solution accurate to 10^{-2} for the function $x - \cos(x) = 0$, $[0, \pi/2]$ Take the initial approximation $x_0 = 0$ and $x_1 = \frac{\pi}{4}$ Q-3 (8 Points) Consider the following table

x	0.1	0.2	0.4	0.5
f(x)	1.32295	1.67828	2.31315	2.42147

Derive a third degree polynomial using <u>Lagrange interpolation formula</u> and find the approximation of f(0.3)

Q-4: (6 Points) Determine $||A||_{\infty}$ for the matrix

$$A = \begin{bmatrix} 1 & 2 & -1 \\ 0 & 3 & -1 \\ 5 & -1 & 1 \end{bmatrix}$$

Q-5 (12 Points) Compute the next iteration x_3 using <u>Muller's Method</u> to approximate the roots of

$$f(x) = x^3 - 5x^2 + 4x$$

Take the initial approximation $x_0 = 4.4$, $x_1 = 5.2$ and $x_2 = 4.8$.

Q-6(12 points)

a) Simple Trapezoidal rule for solving the integral $I(f) = \int_{a}^{b} f(x) dx$ is given by

$$\int_{a}^{b} f(x)dx = \frac{b-a}{2} \left[f(a) + f(b) \right]$$

Show that the local Error that Trapezoidal rule makes in estimating the integral is

$$\int_{a}^{b} f(x)dx - \frac{b-a}{2} [f(a) + f(b)] = E_{s}(f) = -\frac{h^{3}}{12} f^{(3)}(\eta(x)), \text{ where } \eta(x) \in (a,b)$$

b) Use composite <u>Simpson's 1/3 Rule</u> to compute the integral $I(f) = \int_{0}^{1} e^{4x} dx$, n = 8

Q-7 (10Points) Consider the initial value problem $y' = x^3 + y$, y(0) = 2. Compute y(0.2) and y(0.4) using <u>Second order Runge Kutta Method</u>.

Q-8: (8 Points) Compute the first three steps to compute the numerically largest Eigen Value and corresponding Eigen Vectors of the following matrix using <u>*Power Method*</u>. Take the initial

approximation $X_0 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$. $\begin{bmatrix} 25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{bmatrix}$ Q-9: (10 Points) Show that the following system is diagonally dominant. Then compute the first two iterations to find the solution of the system of equation using <u>Gauss-Seidle</u> <u>Method</u>

$$45x_1 + 2x_2 + 3x_3 = 58$$

- 3x₁ + 22x₂ + 2x₃ = 47
5x₁ + x₂ + 20x₃ = 67

Take the initial guess (0,0,0).