Prince Sultan University

Deanship of Educational Services Department of Mathematics and General Sciences

COURSE DETAILS:

Numerical	Analysis	MATH 221	Final Exam			
Semester:	Spring Semester Term 172					
Date:	Thursday May 10, 2018					
Time Allowed:	180 minutes					

STUDENT DETAILS:

Student Name:	
Student ID Number:	
Section:	
Instructor's Name:	

INSTRUCTIONS:

- You may use a scientific calculator that does not have programming or graphing capabilities. NO borrowing calculators.
- NO talking or looking around during the examination.
- NO mobile phones. If your mobile is seen or heard, your exam will be taken immediately.
- Show all your work and be organized.
- You may use the back of the pages for extra space, but be sure to indicate that on the page with the problem.

GRADING:

	Page 1	Page 2	Page 3	Page 4	Page 5	Page 6	Total	Total
Questions								
Max Marks	16	16	14	12	10	12	80	40

Q-1(8 points) Develop an iterative scheme for evaluating the root of a number using **Newton's method** (i.e., you need to find a root of $X = \sqrt[p]{N}$, where *p* is a positive integer). Use this scheme to approximate $\sqrt[3]{11}$. Take the initial guess $X_0 = 2$.

Q-2(8 points) Generate the first three terms \widetilde{X}_1 , \widetilde{X}_2 and \widetilde{X}_3 of the sequence $X_n = \sqrt{\frac{e^{X_{n-1}}}{3}}$, with $X_0 = 0.75$ using **Atkin's Method**.

Q-3(8 points) Consider the Mathematical Problem defined by $=\frac{x}{y}$. Define the approximation $\Delta x = x - \hat{x}$ and $\Delta y = y - \hat{y}$, where \hat{x} and \hat{y} are approximate values of *x* and *y* respectively and Δx and Δy are error terms in *x* and *y*. Show that $Rel(z) \le Rel(x) + Rel(y)$

Where Rel(x), Rel(y) and Rel(z) are relative errors in the *x*, *y* and *z* values respectively.

Q-4(8 points) Use Simpson's $\frac{1}{3}$ rule to evaluate the integral $\int_0^1 \frac{dx}{x^2+6x+10}$ with 4 subintervals.

Q-5(8+6 points) a) Suppose that $f \in C^n[a, b]$ and x_0, x_1, \dots, x_n are distinct numbers in [a, b]. Then for some points $\eta(x)$ on the interval (a, b) spanned by x_0, x_1, \dots, x_n , show that $f^{(n)}(n(x))$

$$f[x_0, x_1, \cdots, x_n] = \frac{f^{(n)}(\eta(x))}{n!}$$

b) Let $f(x) = e^{-x}$. Then using the result of part (a), find the value of f[0,0,1,1]

Q-6(12 points) A metal ball at 1200 °C is allowed to cool down in air at an ambient temperature of 300 °C. Assuming heat is lost only due to radiation, the differential equation for the temperature of the ball is given by

$$\frac{d\theta}{dt} = -2.2067 \times 10^{-12} (\theta^4 - 81 \times 10^8), \qquad \theta(0) = 1200$$

where θ is in °C and t in seconds. Find the temperature at t = 480 seconds using **Runge-Kutta** 2nd order method. Assume a step size of h = 240 seconds.

Q-7(10 points) Show that the following system is diagonally dominant. Then use three iterations of the **Gauss-Seidle Method** to approximate the solution

$$-4x_1 + x_2 + x_3 = -8$$

$$3x_1 - 6x_2 + 2x_3 = 23$$

$$x_1 - 3x_2 + 7x_3 = 17$$

mattice (0, 0, -2, 1, 0, 0)

Take the initial approximation (0.9, -3.1, 0.9).

Q-8(12 points) Compute the l_2 -norm of the matrix $A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ -1 & 1 & 2 \end{bmatrix}$, using Power method. Take (1,1,1) as initial approximation for the Eigen vector. (Just compute 4 iterations)

(Recall that $||A||_2 = \sqrt{\rho(A^T A)}$, where ρ represents the spectral radius).