Prince Sultan University

Deanship of Educational Services Department of Mathematics and General Sciences

COURSE DETAILS:

Numeri	cal Analysis	MATH 221	MAJOR EXAM 2	
Semester:	Spring Semester Term 172			
Date:	Wednesday April 18, 2018			
Time Allowed:	90 minutes			

STUDENT DETAILS:

Student Name:	
Student ID Number:	
Section:	
Instructor's Name:	

INSTRUCTIONS:

- You may use a scientific calculator that does not have programming or graphing capabilities. NO borrowing calculators.
- NO talking or looking around during the examination.
- NO mobile phones. If your mobile is seen or heard, your exam will be taken immediately.
- Show all your work and be organized.
- You may use the back of the pages for extra space, but be sure to indicate that on the page with the problem.

GRADING:

	Page 1	Page 2	Page 3	Total	Total
Questions					
Marks	15	15	15	45	15

Q-1: (8 points) Consider the points $x_0 = 1$, $x_1 = 3$ and $x_3 = 6$. And for the function f(x), the divided differences are $f[x_2] = 3$, $f[x_1, x_2] = 10$ and $f[x_0, x_1, x_2] = 15$. Use this information to construct the complete divided difference table.

Q-2: (7 points) The function f(x) satisfied the equation $f''(x) = x^2 f(x)$ and the condition f(0) = 3, f(0.1) = 5. Use the central difference formula for f''(x) and step size h=0.05 to estimate the value of f(0.05).

Q-3: (8 points) Use Simpson rule for n=6 to compute the integral $\int_0^2 \sqrt{1+4x^2e^{2x^2}} dx$

Q-4: (7 points) Consider the initial value problem

$$\frac{dy}{dx} = \frac{t^2 + y^2}{2}, \quad y(0) = 0$$

$$0 \le t \le 1, -1 \le y(t) \le 1$$

Determine how small the step size should be that the Global error does not exceed to 10^{-6}

Q-5: (9+6 points) a) Show that the error bound for linear Lagrange Interpolation passing through the points $(x_0, f(x_0))$ and $(x_1, f(x_1))$ is $\frac{M(x_1-x_1)^2}{8}$, where $M = max_{x_0 \le \eta \le x_1} f''(\eta)$.

b) Use the error bound in the approximation of Linear Lagrange polynomial for the following data points obtained from the function f(x)=ln(x+2).

x	0	2	4
f(x)	0.6931	1.3862	1.7918